Research

My research focuses on exploring the practical implementation of Bayesian statistics in the field of auditing, with the goal of improving the overall effectiveness and efficiency of auditors. Below you can find an overview of my publications.

Preprints

Mensink, L., de Swart, J., Derks, K., & Wetzels, R. Enhancing efficiency and flexibility in audits through Bayesian optional stopping. PsyArXiv.

Online version

Supplemental materials


Derks, K., Mensink, L., de Swart, J., Wagenmakers, E.-J., & Wetzels, R. Increasing efficiency in stratified audit sampling via Bayesian hierarchical modeling. PsyArXiv.

Online version

Supplemental materials


Derks, K., de Swart, J., Wagenmakers, E.-J., & Wetzels, R. An impartial Bayesian hypothesis test for audit sampling. PsyArXiv.

Online version

Supplemental materials


2024

Derks, K., Mensink, L., de Swart, J., & Wetzels, R. (2024). Toepassing van data-analyse om de steekproef te rationaliseren. Maandblad voor Accountancy en Bedrijfseconomie, 98(4), 131-143.

PDF version

Online version

Supplemental materials


Derks, K., de Swart, J., Wagenmakers, E.-J., & Wetzels, R. (2024). The Bayesian approach to audit evidence: Quantifying statistical evidence using the Bayes factor. Auditing: A Journal of Practice & Theory.

Online version

Supplemental materials


Steens, B., Bots, J., & Derks, K. (2024). Developing digital competencies of controllers: Evidence from the Netherlands. International Journal of Accounting Information Systems, 52.

Online version


2023

Derks, K. (2023). Bayesian Benefits for Auditing: A Proposal to Innovate Audit Methodology. PhD Thesis. Nyenrode Business Universiteit, Breukelen.

PDF version


Derks, K., de Swart, J., & Wetzels, R. (2023). Open-source software als brug tussen de auditor en de statisticus. Maandblad voor Accountancy en Bedrijfseconomie, 97(1/2), 17-28

PDF version

Online version

Supplemental materials


2022

Heck, D., Boehm, U., Böing-Messing, F. Bürkner, P. C., Derks, K., Dienes, Z., Fu, Q., Gu, X., Karimova, D., Kiers, H. A. L., Klugkist, I., Kuiper, R. M., Lee, M. D., Leenders, R., Leplaa, H. J., Linde, M., Ly, A., Meijerink-Bosman, M., Moerbeek, M., Mulder, J., Palfi, B., Schönbrod, F., Tendeiro, J. N., van den Bergh, D., Van Lissa, C. J., van Ravenzwaaij, D., Vanpaemel, W., Wagenmakers, E-.J., Williams, D. R., Zondervan-Zwijnenburg, M., & Hoijtink, H. (2022). A review of applications of the Bayes factor in psychological research. Psychological Methods., 97(1/2), 17-28

Online version

Supplemental materials


Derks, K., de Swart, J., & Wetzels, R. (2022). Een Bayesiaanse blik op gestratificeerde steekproeven heeft voordelen voor de auditor. Maandblad voor Accountancy en Bedrijfseconomie, 96(1/2), 37-46.

PDF version

Online version

Supplemental materials


2021

Derks, K., de Swart, J., van Batenburg, P., Wagenmakers, E.-J., & Wetzels, R. (2021). Priors in a Bayesian audit: How integration of existing information into the prior distribution can improve audit transparency and efficiency. International Journal of Auditing, 25(3), 621-636.

Online version

Supplemental materials


Derks, K., de Swart, J., Wagenmakers, E.-J., Wille, J., & Wetzels, R. (2021). JASP for Audit: Bayesian tools for the auditing practice. Journal of Open Source Software, 6(68), 2733.

PDF version

Online version

Supplemental materials


van Doorn, J., van den Bergh, D., Dablander, F., van Dongen, N., Derks, K., Evans, N. J., Gronau, Q. F., Haaf, J., Kunisato, Y., Ly, A., Marsman, M., Sarafoglou, A., Stefan, A., & Wagenmakers, E.-J. (2021). Strong public claims may not reflect researchers' private convictions. Significance, 18(1), 44-45.

Online version


2020

Ly, A., Stefan, A., van Doorn, J., Dablander, F., van den Bergh, D., Sarafoglou, A., Kucharský, Š., Derks, K., Gronau, Q. F., Raj, A., Böhm, U., van Kesteren, E.-J., Hinne, M., Matzke, D., Marsman, M., & Wagenmakers, E.-J. (2020). The Bayesian methodology of Sir Harold Jeffreys as a practical alternative to the p value hypothesis test. Computational Brain & Behavior, 3, 153-161.

Online version


van den Bergh, D., van Doorn, J., Marsman, M., Draws, T., van Kesteren, E., Derks, K., Dablander, F., Gronau, Q. F., Kucharský, Š., Gupta, A. R. K. N., Sarafoglou, A., Voekel, J. G., Stefan, A., Ly, A., Hinne, M., Matzke, D., & Wagenmakers, E.-J. (2020). A tutorial on conducting and interpreting a Bayesian ANOVA in JASP. L' Année psychologique, 120(1), 73-96.

Online version


Landy, J. F., Jia, M., Ding, I. L., Viganola, D., Tierney, W., Dreber, A., Johannesson, M., Pfeiffer, T., Ebersole, C. R., Gronau, Q. F., Ly, A., van den Bergh, D., Marsman, M., Derks, K., Wagenmakers, E.-J., Proctor, A., Bartels, D. M., Baumann, C. W., Brady, W. J., Cheung, F., Cimpian, A., Dohle, S., Donnelan, M. B., Hahn, A., Hall, M. P., Jiménez-Leal, W., Johnson, D. J., Lucas, R. E., Monin, B., Montealegre, A., Mullen, E., Pang, J., Ray, J., Reneiro, D. A., Reynolds, J., Sowden, W., Storage, D., Su, R., Tworek, C. M., van Bavel, J. J., Walco, D., Will, J., Xi, X., Yam, K. C., Yang, X., Cunningham, W. A., Schweinsberg, M., Urwitz, M., The Crowdsourcing Hypothesis Test Collaboration, & Uhlmann, E. L. (2020). Crowdsourcing hypothesis tests: Making transparent how design choices shape research results. Psychological Bulletin, 146(5), 451-479.

Online version


van Doorn, J., van den Bergh, D., Bohm, U., Dablander, F., Derks, K., Draws, T., Etz, A., Evans, N. J., Gronau, Q. F., Haaf, J. M., Hinne, M., Kucharský, Š., Ly, A., Marsman, M., Matzke, D., Gupta, A. R. K. N., Sarfoglou, A., Stefan, A., Voekel, J. G., & Wagenmakers, E.-J. (2020). The JASP guidelines for conducting and reporting a Bayesian analysis. Psychonomic Bulletin & Review.

Online version

Supplemental materials


2018

Derks, K., Burger, J., van Doorn, J., Kossakowski, J. J., Matzke, D., Atticciati, L., Beitner, J., Benzesin, V., de Bruijn, A. L., Cohen, T. R. H., Cordesius, E. P. A., van Dekken, M., Delvendahl, N., Dobbelaar, S., Groenendijk, E. R., Hermans, M. E., Hiekkaranta, A. P., Hoekstra, R. H. A., Hoffmann, A. M., Hogenboom, S. A. M., Kahveci, S., Karaban, I. J., Kevenaar, S. T., te Koppele, J. L., Kramer, A-W., Kroon, E., Kucharský, Š., Lieuw-On, R., Lunansky, G., Matzen, T. P., Meijer, A., Nieper, A., de Nooij, L., Poelstra, L., van der Putten, W. J., Sarafoglou, A., Schaaf, J. V., van de Schraaf, S. A. J., van Schuppen, S., Schutte, M. H. M., Seibold, M., Slagter, S. K., Snoek, A. C., Stracke, S., Tamimy, Z., Timmers, B., Tran, H., Uduwa-Vidanalage, E. S., Vergeer, L., Vossoughi, L., Yücel, D. E., & Wagenmakers, E.-J. (2018). Network models to organize a dispersed literature: The case of misunderstanding analysis of covariance. Journal of European Psychology Students, 9, 48–57.

PDF version

Online version

Supplemental materials


Wagenmakers, E.-J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Selker, R., Gronau, Q. F., Dropmann, D., Boutin, B., Meerhoff, F., Knight, P., Raj, A., van Kesteren, E.-J., van Doorn, J., Smira, M., Epskamp, S., Etz, A., Matzke, D., de Jong, T., van den Bergh, D., Sarafoglou, A., Steingroever, H., Derks, K., Rouder, J. N., & Morey, R. D. (2018). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 58–76.

PDF version

Online version


Derks, K. van Doorn, J. & Marsman, M. (2018). Extending the Bayesian arsenal: An assumpion check for normality. Research Master thesis.

PDF version