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This thesis outlines the development and application of a
new Bayesian assumption check for assessing deviations
from normality in the distribution of a variable. The pro-
posedmethod yields Bayes factors that quantify evidence
for normality against non-normality, bi-modality and skew-
ness. Results from simulation studies comparing Bayes fac-
tor behavior and sensitivity of the candidate models are
presented, indicating that identifying these deviations is fea-
sible and effortless. Furthermore, an investigation into the
test’s robustness to the prior distribution is presented and
several practical implementations of the assumption checks
are illustrated.

1 | INTRODUCTION

Deviations from normality occur frequently in psychological research. For example, reaction times are well-
known to be non-normally distributed (Ulrich andMiller, 1993). Another example from psychology is the non-normal
distribution of labor income (Diaz-Serrano, 2005). These cases can be hard to analyze due to the shape of their
distribution. Most standard tests (ANOVA, t-tests, regression) rely heavily on normality in the distribution of their
variables. So much even, that they are built around the assumption of normality, stating that the researcher has to
make sure that the data roughly fit a bell curve shape. This is observable from the fact that almost all parametric
frequentist statistical tests have an assumption of normality that, when notmet, yields the test results invalid. When
the normality assumption is violated, other tests, such as non-parametric need to be used to analyze the data. Normality
tests are used for this purpose, to test if non-parametric tests are required. In the frequentist framework, detection
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tools for deviations from normality already exist in the form of the Shapiro-Wilk test (Shapiro andWilk, 1965) and the
Kolmogorov-Smirnov test (Kolmogorov, 1933; Smirnov, 1948; Öztuna et al., 2006). These frequentist normality tests
compare the scores in the sample to a normally distributed set of scores with the samemean and standard deviation as
the sample. The null hypothesis in these tests states that the sample distribution is normal. If the test is significant, it
means that under the assumption of normality the data andmore extreme are improbable. The Kolmogorov-Smirnov
test, for example, is a normality test in which a normal cumulative distribution function is contrasted with the empirical
distribution function of the data (Öztuna et al., 2006). A limitation of the Kolmogorov-Smirnov test is its high sensitivity
to extreme values. The Lilliefors correction renders this test less conservative (Peat and Barton, 2008). However, it has
been reported that the Kolmogorov-Smirnov test has low power and should not be seriously considered for testing
normality (Steinskog et al., 2007). The Shapiro-Wilk test, on the other hand, is based on the correlation between the data
and the corresponding normal scores (Peat and Barton, 2008) and provides higher power than the Kolmogorov-Smirnov
test even after the Lilliefors correction (Steinskog et al., 2007). Some researchers have recommended the Shapiro-Wilk
test as the best choice for testing the normality of data (Thode, 2002). However, both these tests share the same
shortcomings as their frequentist family members, namely that they do not solely depend on observed data and that
that they do not condition on the data, but on the null hypothesis (Ghasemi and Zahediasl, 2012). Another important
frequentist shortcoming is that the p value does not quantify statistical evidence in a reliable way (Wagenmakers, 2007).
On top of that, for small sample sizes, normality tests have little power to reject the null hypothesis and therefore
small samplesmost often pass normality tests (Öztuna et al., 2006). For large sample sizes, significant results would
be derived even in the case of a small deviation from normality (Öztuna et al., 2006; Field, 2009), although this small
deviation will not affect the results of a parametric test (Öztuna et al., 2006). Alongside all of these, there are many
more shortcomings to the general frequentist testing framework whichmakes the frequentist normality test unreliable.
The introduction of Bayesianmethods is a valuable alternative that counters the problems in the frequentist framework.
For example, Bayesian analyses condition on the data rather than on the null hypothesis. In addition, the Bayes factor
quantifies evidence for both the null hypothesis and the alternative hypothesis while indicating uncertainty. For an
overview of (dis-)advantages of both paradigms, see Wagenmakers et al. (2008). Bayesian statistics are becoming
increasingly popular today and awide range of simple and complex Bayesianmethods has beenmade available to the
public (JASP Team, 2018).

However, there are some important facets missing in the Bayesian arsenal. These missing facets include tests
to check violations of underlying model assumptions, so called assumption checks. One of these well-knownmodel
assumptions that needs to be checked is normality. Asmentioned before, the Shapiro-Wilk test is themost used fre-
quentist test, offering a tool to decide between normality and non-normality (Shapiro andWilk, 1965). But frequentism
has more to offer. D’Agostino’s K2 test tries to detect if there is significant skewness in the data (D’agostino et al., 1990),
Anscombe-Glynn’s test tries to find kurtosis in the data (Anscombe and Glynn, 1983), and a test for uni-modality exists
in the form of Hartigan’s dip test (Hartigan andHartigan, 1985). The Bayesian arsenal has not yet arrived at this point,
lacking these kinds of tests for underlyingmodel assumptions for now. However, if Bayesian statistics ever aims to be
the standard in the field, its arsenal of weapons needs to be completed, including assumption checks. This thesis aims
to kick start that and outlines a method for developing a Bayesian test to decide between four hypotheses, H0: the
distribution is normal, H1: the distribution is non-normal, H2: the distribution is bi-modal and H3: the distribution is
skewed. The purpose of the test is to yield Bayes factors for normality versus each scenario of non-normality. To achieve
this in the Bayesian framework, it is important to translate these scenarios of non-normality into formal models. From
these models the marginal likelihoods can be computed which, in turn, can be used to derive Bayes factors for each
comparison between scenarios (Dellaportas et al., 2002).
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In order to translate scenarios into formal models, a family of distributions needs to be composed. The next section
will discuss the rationale used to test for normality in the Bayesian framework and it will explore three families of
distributions that have useful properties. Each of the distributions will be coupled to a hypothesis defining a scenario
of (non-)normality, thereby creating three comparisons that yield Bayes factors. In the results section there will be
a closer look at the behavior of these Bayes factors. An investigation into the influence of the prior will be discussed
and recommendations for the use of certain priors are provided. Using these priors, an investigation into Bayes factor
behavior as a function of the sample size and the degree of non-normality will be discussed. In the end of the results
section, themethod is implemented in a couple of real-life scenarios to get an indication of the performance of the test.
In the final section, the rationale is implemented in a Bayesian independent samples t-test, showing the versatility of the
proposedmethod.

2 | METHOD

The Bayes factor indicates howmuchmore likely the data are under the null hypothesisH0 than under alternative
hypothesisHL and is given by:

BF0L = P (Data | H0)
P (Data | HL ) (1)

Calculating Bayes factors requires amodel for the different types of (non-)normality. As in the frequentist framework,
themodels under consideration should all sketch a scenario of (non-)normality. Possible scenarios include the general
scenario of non-normality, but also bi-modality and skewness. These will be translated into the following numbered
hypotheses:

H1: Non-normality
H0: Normality H2: Bi-modality

H3: Skewness

By substituting HL in Equation 1with one of these numbered hypotheses, a Bayes factor for this comparison can be
formulated. For example, the Bayes factor in favor of H0: normality versus H1: non-normality can be formulated as BF01:

BFNormality vs. Non-normality = BF01 = P (Data | H0)
P (Data | H1) =

P (Data | Normality)
P (Data | Non-normality) (2)

By varying HL , three Bayes factors will be computed, quantifying normality or a specific deviation from it. These Bayes
factors will be derived from the following comparisons:

H0: Normality vs. H1: Non-normality = P (Data | Normality)
P (Data | Non-normality) = BF01

H0: Normality vs. H2: Bi-modality = P (Data | Normality)
P (Data | Bi-modality) = BF02

H0: Normality vs. H3: Skewness = P (Data | Normality)
P (Data | Skewness) = BF03

(3)
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Until here, the hypotheses have been only a vague description of the scenario they describe. Equation 4 displays
how the probability of the data given a hypothesis HL can be calculated and shows that amodel with accompanying
priors is required for this calculation. In this equation, f is a distribution function with parameters θL , πL represents the
prior over the parameters associated with themodel for HL .

P (Data | HL ) =
∫
f (Data | θL )︸           ︷︷           ︸

Model
· πL (θL )︸  ︷︷  ︸
Prior

dθL (4)

This means that, in order to calculate Bayes factors, models and priors for thesemodels need to be defined. First there
will be a focus on how thesemodels are selected. After that it will be explained how the priors on the parameters are
chosen.

Themodels come from three candidate distributions picked for their close association with normality: the normal
distribution, themixture-normal distributionand the skew-normal distribution. In short, themixture-normal distribution
can be seen as the merging of two normal distributions, thereby creating a different distribution. The skew-normal
distribution is an extension of the normal distribution, with the added property that it can easily become oblique.
Choosing distributions that share properties with the normal distributionmakes the comparison betweenmodels fairer,
as alternativemodels only have a few extra parameters, which causes them not to get penalized toomuch. This means
that the candidate distributions are all family of the normal distribution and that deviations from normality should be
quantified by additional parameters. The goal of the next part is to determine whichmodel is suited best for assessing
specific deviations from normality. For that, it is useful to first study the three candidate distributions that themodels
come from.

AModel for (Non-)Normality

The Bayes factor in favor of H0: Normality and H1: Non-normality (BF01) compares the null hypothesis of normality
against the alternative hypothesis of non-normality. Since normality is the simplest scenario that needs to bemodeled,
the distribution for this scenario must be the smallest in size (e.g., fewest parameters), so that any deviation from
normality adds a parameter to themodel. The normal distribution will be used tomodel the base case of normality. The
mixture-normal distribution will be used tomodel non-normality.

The Normal Distribution

The normal distribution (Patel and Read, 1996; Altman and Bland, 1995) is a popular distribution with two parame-
ters; µ represents themean of the distribution and σ represents the standard deviation. Themean is the location of the
distribution, while the standard deviation defines the width of the distribution. The effect of µ and σ on the shape of the
distribution is visualized in Figure 1. The normal density is defined as:

f (x | µ,σ) = 1

σ
√
2π
e
−(x−µ)2
2σ2 , where µ ∈ Ò,σ > 0 (5)

Figure 1 displays the effect of the mean parameter µ, showing that the distribution shifts along the x-axis when µ is
increased (blue distribution) or decreased (red distribution). The green distribution is narrower and taller than the red
and blue distributions, due to a smaller standard deviation σ .
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F IGURE 1 Three examples of the normal distribution. The green distribution has parameters µ = 0, σ = 1 and is
referred to as the standard normal distribution. The blue distribution has parameters µ = 3, σ = 1.5. The red
distribution has parameters µ = −3, σ = 1.5

TheMixture-Normal Distribution

The simplest mixture-normal distribution extends the normal distribution with a mixture parameter θ ∈ (0,1)
(McLachlan and Peel, 2004). It has three parameters; θ, λ1 and σ . The parameter θ is a mixture weight and controls to
what extend two normals aremixed. The location parameter λ1 is themean of the distributions, where −λ1 is themean
of the first distribution and +λ1 is the mean of the second distribution, giving the distribution a symmetric property.
Formally, themixture-normal density is defined as:

f (x | θ, λ1,σ) = θ ·
1

√
2πσ2

· e−
(x−λ1)2
2σ2︸                   ︷︷                   ︸

Distribution 1

+ (1 − θ) · 1
√
2πσ2

· e−
(x+λ1)2
2σ2︸                   ︷︷                   ︸

Distribution 2

, where θ ∈ (0, 1) , λ1 ∈ Ò,σ > 0 (6)

In this equation, θ is amixtureweight for dividing themass over the twonormal distributions. Since probabilitiesmust be
summable to one, it follows that 1−θ is themixtureweight for the other distribution. Therefore, θ is partially responsible
for defining the shape of the distribution. The standard deviation σ again defines the width of both distributions. The
mixture-normal distribution can be used tomodel bi-modality and skewness. By setting θ = eλ0

eλ
0
+e−λ0

andσ to 1, Equation
6 can be simplified to:

f (x | λ0, λ1) =
cosh (λ0 + λ1x ) · φ (x )
cosh (λ0) · e 12 λ21

, where λ0 ∈ Ò, λ1 ∈ Ò (7)

From Equation 7 it follows that, when 0 < θ < 1 and λ1 < 1, the symmetric property of λ1 ensures that the distribution
is uni-modal. In contrast, when λ1 is larger than one, the distribution becomes bi-modal. The effect of θ and λ1 on the
shape of the distribution is visualized in Figure 2. The green distribution closely resembles a normal distribution seen in
Figure 1. This is caused by the two normal distributions in themixture-normal overlapping and creating an uni-modal
distribution. The blue distribution is also uni-modal, but skewed to the left. Themixture weight θ causes this skewness,
as 34 th of the data (θ = .75) are in the first distribution and 1

4
th of the observations are in the second distribution. In the
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red distribution half of all observations come from each distribution, causing it to become bi-modal.

F IGURE 2 Three examples of themixture-normal distribution. The green distribution has parameters
λ1 = 1, θ = .5 and acts like a normal distribution. The blue distribution has parameters λ1 = 1, θ = .75 and is a skewed
normal distribution. The red distribution has parameters λ1 = 2, θ = .5 and is a bi-modal distribution.

By adding an extra location parameter to the formula, a more flexible case of themixture-normal distribution is
revealed. With this change, λ1 in the second part of the formula is substituted by the parameter λ2. The new formula for
themixture-normal density then becomes:

f (x | θ, λ1, λ2,σ) = θ ·
1

√
2πσ2

· e−
(x−λ1)2
2σ2 + (1 − θ) · 1

√
2πσ2

· e−
(x+λ2)2
2σ2 , where θ ∈ (0, 1) , λ1 ∈ Ò, λ2 ∈ Ò,σ > 0 (8)

If the distribution utilizes two location parameters, +λ1 is themean of the first distribution and −λ2 is themean of the
second distribution. This enables the distribution tomodel more scenarios than themixture-normal distribution with
onemean parameter. To ensure that themodel is not penalized toomuch, we keep one free standard deviation σ in the
model instead of two.

Label Switching Problem

When sampling from the posterior distribution of amixture-normal model usingMCMC sampling, a problematic
phenomenon associated with mixture-models occurs. At a specific point of the sampling procedure, the values for
the parameters switch to a different component of the distribution. This is called the label switching problem (Jasra
et al., 2005; Stephens, 2000) and occurs when there is no prior information that distinguishes between components
of a mixture distribution (e.g. the prior distribution is the same for all components of the mixture distribution). This
could be problematic because it results in the posterior distribution being similarly symmetric when samples are taken
from it. The symmetry can cause issues when trying to estimate quantities which relate to individual components of
themixture. However, for the current case this problem is not an issue because when there is label switching of the
mean parameter λ1, the linked shape parameter θ switches along with it. Therefore the label switching problem has
no repercussions for themodel fit of themixture-normal model, meaning that it can be interpreted without caution.
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Because of the distributions flexibility, it is used tomodel non-normality.
BF01 —H0: Normality vs. H1: Non-normality

Plugging themodels for normality and non-normality into Equation 1 to substitute the hypotheses H0 andHL yields
a Bayes factor in favor of normality against non-normality of the following form:

BFNormality vs. Non-normality = BF01 =
s ∏n

i=1 f (xi | µ,σ) π (µ,σ) dµ dσ⨌ ∏n
i=1 f (xi | θ, λ1, λ2,σ) π (θ, λ1, λ2,σ) dθ dλ1 dλ2 dσ

(9)

Since themixture-normal distribution is a flexible distribution, it is likely to performwell in modeling non-normality.
However, since it is still a parameterizedmodel it will not be able to capture all deviations from non-normality, as for
example the Kolmogorov-Smirnov test does. This means that there is a loss of general information that is tested for
(e.g., not all deviations can be found), but also that there is a gain in specific information (e.g., deviations that look like
mixture-normal distributions are identified better).
AModel for Bi-Modality

The Bayes factor in favor of H0: Normality against H2: Bi-modality (BF02) compares the null hypothesis of normality
against the alternative hypothesis of bi-modality. For the hypothesis of normality vs. bi-modality, a normal model was
tested against a mixture-normal model with restricted parameters. The restriction was implied for the parameters λ1
and λ2, controlling themeans of the two normal distributions in themixture. Restricting λ1 and λ2 to be higher than 1
would formally mean that the distribution can only model bi-modality, a useful property when testing explicitly for that
deviation from normality. The results section features a segment onwhy themixture-model was restricted in order to
test for bi-modality (page 19).
BF02 - H0: Normality vs. H2: Bi-modality

Plugging themodels for normality and bi-modality into Equation 1 to substitute the hypotheses H0 andHL yields a
Bayes factor in favor of normality against bi-modality of the following form:

BFNormality vs. Bi-modality = BF02 =
s ∏n

i=1 f (xi | µ,σ) π (µ,σ) dµ dσ⨌ ∏n
i=1 f (xi | θ, λ1 > 1, λ2 > 1,σ) π (θ, λ1 >!, λ2 > 1,σ) dθ dλ1 1, dλ2 > 1 dσ

(10)

Whatever comparison is under investigation one needs to standardize the data (x = x−x̄
σx
) when doing the assumption

check, something that affects normality in the distribution. However, it does not seem to affect the results in the
study. The reason for standardizing is that the mixture-normal model is a symmetrical model around zero, which
means that it expects its modes to be around zero. Also, since the restriction of bi-modality formally only applies when
λ1 > 1, it makes sense to standardize the data so that there is always data present that falls outside of this range.
When non-centered data are used there exists a possibility that the data only falls within the range of -1 to 1. For the
mixture-normal distribution to detect bi-modality, nomean is allowed that is between -1 and 1. If data have suchmeans
themixture-normal model would fit horribly or evenworse, not detect bi-modality at all, as it is restricted to havemeans
that fall outside of this range. Centering the data makes sure that the whole data are in the range of -3 to 3 and the
restrictedmixture-normal model can be adequately fit (Heiman, 2001).
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AModel for Skewness
The Bayes factor in favor of H0: Normality against H3: Skewness (BF03) compares the null hypothesis of normality
against the alternative hypothesis of skewness. Again, the normal distributionwill be used tomodel the base case of
normality. However, this time skew-normal distributions will be used tomodel skewness.
The Skew-Normal Distribution

The skew-normal distribution (Azzalini, 2005; Liseo and Loperfido, 2004) is an extension of the normal distribution
and has three parameters: µ,σ and α . When α = 0, then µ is interpreted as the mean of the distribution and σ is
interpreted as the standard deviation of the distribution. The additional parameter α is the skewness of the distribution.
The effect of α on the shape of the distribution is visualized in Figure 3. The skew-normal density is defined in Equation
11, where Φ indicates the cumulative standard normal distribution function and φ indicates the standard normal
probability density function.

f (x | µ,σ, α) = 2

σ
· φ

( x − µ
σ

)
· Φ

(
α

( x − µ
σ

))
, where µ ∈ Ò,σ > 1, α ∈ Ò (11)

Figure 3 shows three different scenarios of the skew-normal distribution. The green distribution again resembles a
normal distribution. It is essentially the same, since α in this case is zero. However, the red and blue distributions are
skewed respectively to the left and to the right, showing the effect of a negative (blue distribution) and positive (red
distribution) α . For every distribution, the location parameter µ is set to zero. It is worth to note that the skew-normal
distributionmodels skewness heavily, as both the red and the blue distribution have almost nomass to the other side of
zero.

F IGURE 3 Three examples of the skew-normal distribution. The green distribution has parameters
µ = 0, σ = 1, α = 0. The blue distribution has parameters µ = 0, σ = 1, α = −10. The red distribution has parameters
µ = 0, σ = 1, α = 3.

The option to use themixture-normal model to test skewness was considered, but the conclusion that this model does
not capture skewness as well as the skew-normal model was drawn. This is explained in Figure 4, where the fit of the
mixture-normal model and the fit of the skew-normal model is presented on typical skewed data. Visual inspection
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of the curves indicates that the skew-normal model (green curve) covers more of the skewed distribution than the
mixture-normal model (red curve). This observation is the basis of the choice for the skew-normal distribution as the
alternative hypothesis in the test for skewness.

F IGURE 4 Histogram of typical skewed data with the fit of themixture-normal model (red) and the skew-normal
model (green). Visually, the skew-normal model covers more of the distribution than themixture-normal model and is
therefore the preferred choice tomodel skewness.

BF03 —H0: Normality vs. H3: Skewness

Plugging themodels of normality and skewness into Equation 1 to substitute the hypotheses H0 andHL yields a Bayes
factor in favor of normality against skewness of the following form:

BFNormality vs. Skewness = BF02 =
s ∏n

i=1 f (xi | µ,σ) π (µ,σ) dµ dσt ∏n
i=1 f (xi | µ,σ, α) π (µ,σ, α) dµ dσ dα

(12)

Prior Selection
In order to calculate Bayes factors, a prior needs to be set on the parameters in eachmodel. The prior that is being

put on parameters —be it a model parameter or an effect size— has influence on the Bayes factor, as the latter is based
on the former (Gelman et al., 2013). To illustrate this fact, consider Figure 5. Here, a Bayesian independent t-test is done
on themeanNEO (Costa andMcCrae, 1985) scores betweenmales and females (part of JASP’s Kitchen Rolls data set).
A Cauchy prior is placed on the effect size δ . The left plot shows the prior (dotted line) and posterior (solid line) under a
Cauchy prior with a scale parameter γ of .707. The resulting Bayes factor in favor of a difference between the groups
equals 26.261, meaning that it can be fairly confidently said that there is a difference between themeanNEO scores of
males and females. However, when a normal prior with a standard deviation of .1 is used instead, the Bayes factor lies
around 2. In this scenario, the conclusion would be that there is no convincing evidence for a difference betweenmales
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and females scores.

F IGURE 5 Results from a Bayesian independent t-test analysis illustrating the effects of the prior that is used. Both
analyses used the same data, however the Bayes factors in favor of a difference betweenmales and females scores
differ substantially.

This example illustrates that the prior that is chosenmatters for the outcome of the analysis. A good prior would
indicate strongly that there is a difference between groups, and indicate no difference when there is not. The candidate
models oftenmake use of parameters like the location and the scale of the distribution, which can respectively be seen
as themean µ and the standard deviationσ . Themean of the distributions is continuous and can be negative, so the prior
for µ ideally spans the range of positive and negative values. The standard deviation of these distributions is always a
positive number, whichmeans that the prior on σ should consider this by only assigningmass to the positive range of
numbers. A good suggestion for these priors is shown below (Gelman et al., 2006) and these suggestions were used as
priors for µ and σ throughout the study.

µ ∼ Normal (0, 1) σ ∼ Gamma (2, 1) (13)

Since different families of priors can result in substantial differences in test results, it is important to research their
impact thoroughly. This procedure can be seen as a robustness check, similar to the one incorporated in JASP (Figure
6) where the sensitivity of the analysis to the prior and its parameters is investigated (Berger et al., 1994). The goal
of this part of the research is to a) find a suitable family of priors for the parameters and b) choose appropriate hyper
parameters for this family. The chosen prior should be one that is robust and differentiates between the models of
interest the best. To achieve this, data is simulated under normally distributed data and non-normally distributed data.
By investigating the resulting Bayes factors, a prior family and hyper parameter are chosen. Themost optimal priors for
the parameters θ, λ1 and α that resulted from this study are shown below and it is indicated to which distribution they
belong.

θ ∼ Normal (.5, .1)︸                   ︷︷                   ︸
Mixture-normal

λ1 ∼ Normal (0, 1)︸                   ︷︷                   ︸
Mixture-normal

α ∼ Cauchy (0, .2)︸                   ︷︷                   ︸
Skew-normal

(14)
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F IGURE 6 JASP’s Bayes factor robustness check for an independent samples t-test. The line indicates the Bayes
factors under different prior widths for the Cauchy prior on the effect size.

Summary

In this section, hypotheses about scenarios of normality were modeled with three different distributions: the
normal distribution, themixture-normal distribution and the skew-normal distribution. Using thesemodels, the Bayes
factors in Equation 3 (BF01, BF02 and BF03) can be calculated, quantifying evidence in favor of normality against non-
normality, bi-modality and skewness. Table 1 summarizes the previous section by listing the scenarios of normality, the
distributions used tomodel them, their (free and restricted) parameters and the corresponding priors.
TABLE 1 Themodels that are used to describe scenarios of (non-)normality and their free and restricted
parameters and priors. Themodel color serves the goal of identifying themodels in further illustrations, making them
easier to interpret.

Scenario Model Parameter Prior Model color
Normality Normal µ µ ∼Normal(0, 1)

σ σ ∼Gamma(2,1)
Non-normality Mixture-normal θ θ ∼Normal(.5,.1)

λ1 λ1 ∼Normal(0,1)
λ2 λ2 ∼Normal(0,1)
σ σ ∼Gamma(2,1)

Bi-modality Restrictedmixture-normal θ θ ∼Normal(.5,.1)
λ1 > 1 λ1 ∼Normal(0,1)
λ2 > 1 λ2 ∼Normal(0,1)
σ σ ∼Gamma(2,1)

Skewness Skew-normal µ µ ∼Normal(0,1)
σ σ ∼Gamma(2,1)
α α ∼Cauchy(0,.2)
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Candidate models that capture deviations from normality are extensions of the normal distribution, which means
that their parameters quantify these deviations. Since the normal distribution has fewer parameters than the other
distributions, it should be preferredwhen data are truly normally distributed. Testing for normality with themixture-
normal model should equal testing if θ = 0 or θ = 1, since that means that themixture-normal distribution is uni-modal.
The same applies to λ1 < 1. Both values of these parameters would mean that the distribution would be equivalent
to a normal distribution, since it is uni-modal and not skewed (Figure 2, green distribution). Consequently, testing for
deviations from normality would mean testing if 0 < θ < 1 or if λ1 > 1. Testing for normality with the skew-normal
model implies testing if α = 0. Fixing α = 0would mean that the skew-normal distribution behaves like the normal
distribution, since skewness is absent (Figure 3, green distribution).

3 | RESULTS

Measuring performance of the test is no easy task, since there is no standard for Bayesian assumption checks.
Therefore it was decided that desired behavior of the test should include three components; 1) Bayes factors should
favor their data generatingmodel, 2) Priors should result in optimal Bayes factors and 3) Bayes factors should —with a
sufficient sample size— yield decisive conclusions for any of the competing hypotheses. These criteria are necessary for
a useful assumption check andwill therefore be the behaviors thatwill be investigated. The first sectionwill shed light on
the selection of appropriate priors to elicit desired Bayes factors. Using these priors, the behavior of the Bayes factors
under the influence of a variable sample size will be investigated. The third section will investigate the influence of
different data scenarios on the Bayes factors. At the end of this section follows an argumentation onwhy the restricted
mixture-model is selected tomodel bi-modality.
Prior Selection

In the previous section, it is stated that priors should result in optimal Bayes factors. Here, optimal Bayes factors
are defined in terms of discriminative power, that is to indicate strongly that there is a difference between groups, and
indicate no difference when there is not. These demands can be translated into two simple heuristics that need to
be met. Heuristic one is that the prior should result in maximum Bayes factors in favor of the null hypothesis (BF01)
when data are normally distributed. Heuristic two states that the prior distribution should result in minimumBayes
factors in favor of the null hypothesis when data are not normally distributed. To get an indication of the influence of
the prior distribution, a simulation studywas performed. In the following segments, investigations into various priors
will be discussed for the parameters of the mixture-normal model (θ and λ1) and the skew-normal model (α ) in the
form of a simulation study. The goal of the simulation studywas to select a) an appropriate family of priors and b) an
appropriate value of the hyper parameters of the prior. Data (N = 200) were either generated from a normal distribution
(µ = 0,σ = 1), a mixture-normal distribution (θ = .5,σ = 1, λ1 = 3) or a skew-normal distribution (µ = 0,σ = 1, α = 10),
depending on which prior was being investigated. The prior parameters are varied to investigate their effect on the
Bayes factors. When choosing a decent prior, the pattern of Bayes factors is investigated because that provides the
most information on how these priors differ from each other. By pinpointing themaximum andminimumBayes factor
under each prior —depending on the data—, the optimal parameter for that family of priors can be identified.
TheMixtureWeight θ

The mixture weight θ influences the shape of the mixture-normal distribution, depending on it’s value. Since
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it represents a weight for mixing two normal distributions, θ must lie in the range of 0 to 1. A beta prior would be
appropriate to consider for this parameter, since it is mathematically convenient to work with in this range. However,
other priors that could be considered are a truncated normal prior and a truncated Cauchy prior. These alternative
priors would also span the range of 0 to 1. The goal of selecting a decent prior is to gain the highest Bayes factors
when data are normally distributed (Log(BF01), logarithm of the Bayes factors higher than zero are evidence in favor
of normality). When data are mixture-normally distributed, one must be looking for the prior that yields the lowest
Bayes factors Log(BF01). Figure 7 shows the logarithm of BF01 under several parameter values in various priors. For the
Cauchy prior, the prior parameter under consideration is the scale parameter γ, the location parameter x0 is fixed to 0.5.
For the beta prior, the prior parameter equals α , the β parameter is set to 1. If β were selected and α were to be fixed to
1, the results are the same. For the normal prior, the prior parameter under consideration is the standard deviation σ .
The location parameter µ is fixed to 0.5.

F IGURE 7 Line plot showing Log(BF01) under a Cauchy prior, a beta prior and a truncated normal prior for the
parameter θ in themixture-normal model (N = 200). The left plot shows Log(BF01) under normally distributed data. The
right plot shows Log(BF01) under mixture-normally distributed data.

Figure 7 shows that a truncated normal prior and aCauchy prior on θ yield themost optimal results, that is, they produce
the highest Bayes factors under normally distributed data and low Bayes factors under a non-normally distributed data
set. A beta prior produces the lowest Bayes factors under non-normal data, but this difference is minor in relation to the
strength of the Bayes factors.
The Location Parameter λ1

The location parameter λ1 in themixture-normal distribution defines themean of each of the normal distributions
in themixture. Since the data are centered to a range of -3 to 3, and each of the two distribution lies on a different side
of zero, it couldmake sense to put a beta prior on this parameter. Other options could, again, be a truncated normal
prior or a Cauchy prior. The location parameters for the Cauchy and normal priors are set to 0. Figure 8 displays the
logarithm of BF01 under several values of the parameters in the different priors. It shows that a normal prior on λ1 yields
themost optimal result, that is, it produces the highest Bayes factors under normally distributed data and the lowest
Bayes factors under non-normally distributed data. Another important property of this normal prior is that it shows the
most consistent behavior compared to the Cauchy prior. Inconsistent behavior is an issue when selecting a value for the
scale parameter γ in the Cauchy prior. One could easily be in for a surprise, as the pattern is not smooth.
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F IGURE 8 Line plot showing Log(BF01) under a Cauchy prior, a beta prior and a truncated normal prior for the
parameter λ1 in themixture-normal model (N = 200). The left plot shows Log(BF01) under normally distributed data.
The right plot shows Log(BF01) under mixture-normally distributed data.

The fact that the pattern of the Bayes factors under a Cauchy prior is not smooth presents uncertainty for this family of
priors. It is then wiser to pick a family with amore consistent pattern, such a the normal one. An important note for the
normal prior is that one should not choose a standard deviation that is too low, as that produces a Bayes factor that is
favoring the null hypothesis toomuch.
The Skewness Parameter α

The parameter α in the skew-normal distribution influences how skewed the distribution is. It makes sense to put
a prior on this parameter that gives a higher probability to lower values, since data often are not extremely skewed.
Therefore, a Cauchy prior would be a sensible option. Also a beta prior is considered alongside a truncated normal prior.
The location parameter in the Cauchy and beta priors are fixed to 0. Figure 9 shows the logarithm of BF03 under several
values of the parameters in the different priors. It shows that a Cauchy prior yields themost optimal result.

F IGURE 9 Line plot showing Log(BF03) under a Cauchy prior, a beta prior and a truncated normal prior for the
parameter α in the skew-normal model (N = 200). The left plot shows Log(BF03) under normally distributed data. The
right plot shows Log(BF03) under skew-normally distributed data.
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Recommended Priors

In sum, the priors that arise from this study are recommended because they produce Bayes factors in favor of the
null hypothesis of normality that reach amaximumwhen data are normally distributed, and in turn, reach aminimum
when data are non-normally distributed. Selection of specific hyper parameters for these priors is a tricky case, as
Figure 7, Figure 8 and Figure 9 are simply based on case studies. However, the influence of the prior family is clearly
visible. Equation 15 presents themost effective priors and a recommendation of hyper parameters that are likely to
produce optimal Bayes factors. Under these priors, the distribution they are associated with is given. Figure 10 shows
how these priors look when plotted individually.

θ ∼ Normal (.5, .1)︸                   ︷︷                   ︸
Mixture-normal

λ1 ∼ Normal (0, 1)︸                   ︷︷                   ︸
Mixture-normal

α ∼ Cauchy (0, .2)︸                   ︷︷                   ︸
Skew-normal

(15)

F IGURE 10 Visualization of the recommended priors on themodel parameters θ, λ1 and α . The recommended
Normal prior on θ has amean µ of 0.5 and a standard deviation σ of 0.1. The recommended normal prior on λ1 has a
location parameter µ of 0 and a standard deviation σ of 1. The recommended Cauchy prior on α has a location
parameter x0 of 0 and a scale parameter γ of 0.2.

Bayes Factor Behavior
To learn the behavior of the Bayes factors under several data scenarios, it is useful to map their behavior in multiple

dimensions. Regular graphs only do this in one or two dimensions. Heat-maps, however, have the possibility to show
a trend given combinations of two variables. The heat-maps in Figure 11 show parameters of the generated data on
which the comparison normal vs. mixture-normal (left column) and normal vs. skew-normal (right column) wasmade. In
order to get an indication of the sensitivity of the test, it is useful to look at the Bayes factor behavior by combining the
variableN, the sample size, and a (non-)normality parameter. The non-normality parameter for mixture-normal data is
λ1, as it controls the location andwith that the bi-modality of the distribution. Recall that when λ1 > 1, the distribution
becomes bi-modal. The non-normality parameter for skew-normal data is α , as it controls the degree of skewness in the
data. Normal data can be observed in the Figure 11 by looking at the bottom two rows of each plot. In the left column,
the location parameter λ1 is smaller than 1, indicating normally distributed data. In the right column, the skewness
parameter α is small, also indicating somewhat normally distributed data.

By investigating the number of observations (N) in Figure 11 it becomes clear how powerful and sensitive the
model is in detecting non-normality. The left column shows the observed behavior of the logarithm of the Bayes factors
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in favor of the null hypothesis of normality against non-normality Log(BF01). The right column shows the observed
behavior of the logarithm of the Bayes factors in favor of the null hypothesis of normality against skewness Log(BF03).
The upper row shows data coming from a mixture-normal distribution. The bottom row shows data coming from a
skew-normal distribution. This mapping creates four panels, eachwith its own combination of comparison and data.
Various gradations of color indicate the strength of the Bayes factor.

F IGURE 11 Plots showing the behavior of Log(BF01) (right column) and Log(BF03) (left column) under several data
generating parameters. The first row shows the data coming from amixture-normal distribution. The second row
shows data coming from a skew-normal distribution. The bottom two rows in each panel can be considered to be
coming from a normal distribution.

All four panels show expected behavior. When the non-normality parameters (λ1 and α ) increase, the alternativemodels
get more strongly preferred by the Bayes factor. This is desired behavior, as it means that when non-normality, bi-
modality or skewness increases, the Bayes factor reflects this. The bottom two rows of the panels aremore interesting,
as the upper left panel shows that under normally distributed data, the normalmodel is preferred to themixture-normal



DERKS, VANDOORN &MARSMAN 17

model. The upper-right panel shows that under normally distributed data, the normal model is only slightly preferred
to the skew-normal model. This indicates that the normal vs. skew-normal comparison is not convincing in detecting
normality. However, it is adequate for quantifying the degree of skewness in the data. Furthermore, increasing the
sample size under non-normal datameans an increase in the Bayes factor for the preferredmodel, which is desirable.

After investigating what role sample size plays in these comparisons, it is useful to see what the behavior of Bayes
factors is under different distributions of data. The following two panel plots illustrate this question. The first plot,
Figure 12, shows behavior under data coming from amixture-normal distribution (N = 100), and varies the parameters
θ and λ1 (σ = 1).

F IGURE 12 Panel plot showing the behavior of Log(BF01), Log(BF13) and Log(BF03) under data generated from a
mixture-normal distribution (N = 100) with varying parameters θ and λ1. The location parameter λ1 is varied between
the columns, while themixture weight θ is varied on the x-axis. The top row shows the comparison normal vs.
mixture-normal (BFNormality vs. Non-normality). The bottom row shows the comparison normal vs. skew-normal
(BFNormality vs. Skewness).
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Ideally, Bayes factors show that under the λ1 parameter values of 0 and 1, the normalmodel would be preferred over the
mixture-normal model, as data generated under these parameters is essentially normally distributed. This is the case in
the upper-left and upper-middle panel. Only when λ1 > 1, the data would be considered non-normal (e.g. bi-modal). The
upper-right panel shows that Bayes factors are in favor of themixture-normal model when this is the case. The second
row displays the comparison mixture-normal vs. skew-normal. One would expect the skew-normal to outperform
themixture-normal model when data are essentially normally distributed, as themixture-normal model has an extra
parameter which is penalized. When data becomes bi-modal themixture-normal model outperforms the skew-normal
model, as shown in themiddle-right panel. Looking at the normal vs. skew-normal case shows that the skew-normal
model is preferred over the normal model in all cases of the data. Next is a scenario where the data are coming from the
skew-normal distribution (N = 100), varying the data generating parameters µ and α (σ = 1), see Figure 13.

F IGURE 13 Panel plot showing the behavior of Log(BF01), Log(BF13) and Log(BF03) under data generated from a
skew-normal distribution (N = 100) with varying parameters µ and α . Themean parameter µ is varied between the
columns, while the skewness parameter α is varied on the x-axis. The top row shows the comparison normal vs.
mixture-normal (BFNormality vs. Non-normality). The bottom row shows the comparison normal vs. skew-normal
(BFNormality vs. Skewness).
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Ideally, Bayes factors show that the skew-normal model would be preferred in cases where simply α > 0. This can
be observed in all columns of the second and third row of the panel plot. A distinct trend is clearly visible, namely that
when the α parameter increases and the data distribution becomesmore skewed, the skew-normal model is strongly
preferred over both other models.
Restricting theMixture-Normal Distribution

To arguewhy bi-modality is modeledwith a restrictedmixture-normal distribution instead of a regular mixture-
normal distribution, a scenario is presentedwhere bothmodels are fit on the samedata. The data (N=1000) are sampled
from a mixture-normal distribution (θ = .5,σ = 1) where the parameter λ1 is varied. Bayes factors were calculated
in favor of the normal model against themixture-normal model or a restrictedmixture-normal model as alternative
hypotheses. Figure 14 shows that the Bayes factors under a restricted mixture-normal model are equally strong as
Bayes factors under a non-restrictedmixture-normal model when the data are bi-modal (λ1 > 1). When the data are
normal—formally if λ1 < 1when data are sampled from amixture-normal distribution— this comparison should return
Bayes factors in favor of the normal model. This can be observed in the restrictedmixture-normal model. However, it is
not the case when the regular mixture-normal model is used, since its Log(BF02) hardly exceeds zero. This is enough
reason to prefer the restrictedmixture-normal as themodel to detect bi-modality. However, the regularmixture-normal
model is kept to detect any general deviation from normality, since it is impossible to alsomodel traditional skewness
for the restricted mixture-normal model. As the restriction is applied to its twomodes, which are around zero, they
cannot overlap and as such cannot capture skewness.

F IGURE 14 Line graph showing Log(BF02) for the comparison normal vs. mixture as a function of the data
generating parameter λ1. As can be seen, the restrictedmixture-normal model yields stronger Bayes factors when the
data are normally distributed (e.g. −1 < λ1 < 1).

Real-life Scenarios
Until now, the focus has been on the performance of the test under controlled circumstances. However, the test

needs to be able to produce sensible results when applied in real-life situations. Therefore, this section discusses three
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real world demonstrations of the developed test, based on publicly available data from the web. The first case will focus
on the average temperature in NewHaven, Connecticut and asks the question whether this natural phenomenon is
normally distributed. The second example will focus on the number of years of experience of NBA basketball players
and presents us with an interesting question of whether there exists bi-modality in this distribution. The third and
final example will focus on the rating of board games, an illustration of the skewed case. Alongside the Bayesian tests
for (non-)normality, frequentist results for the corresponding comparisons will be displayed to showwhether there is
correspondence between the twomethods. For the test of non-normality, the p value from the Shapiro-Wilk test is
displayed. For the test of bi-modality, the p value fromHartigan’s dip test is displayed. For the test of skewness, the p
value fromD’Agostino’s K2 test is displayed. For all tests the same rule applies; when the p value is below .05, the data
are not normally distributed.

Average Temperature in NewHaven, Connecticut

New Haven, Connecticut has a typical New York City area climate. It has long, hot summers, and cool to cold
winters. FromMay to late September, the weather is typically hot and humid, with average temperatures exceeding 27
degrees Celsius on 70 days per year. In summer, the BermudaHigh creates as southern flow of warm and humid air, with
frequent thundershowers. October to early December is normally mild to cool late in the season, while early spring
can be cool to warm. Winters aremoderately cold with both rain and snow fall. The weather patterns that affect New
Haven result from a primarily offshore direction, thus reducing themarine influence of Long Island, although, like other
marine areas, differences in temperature between areas right along the coastline and areas amile or two inland can be
large at times. Because of the regular weather pattern, it can be expected that the temperature is normally distributed.
This data is obtained fromweather stations and shows the average temperature in 60 years (N = 60).

F IGURE 15 The centered distribution of the temperature in NewHaven, Connecticut over the course of 60 years
(N = 60). The Bayes factor in favor of normality equals e4.04 = 56.83. It is interesting to note that BFNormality vs. Skewness
is in favor of skewness, even though the data are roughly normally distributed.
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Figure 15 shows something that resembles a normal distribution, but could also be coming from a bi-modal distribution
with long tails. Themethod tells us that the data are normally distributed. TheH0: Normality vs. H1: Non-normality
comparison shows that the hypothesis of normality is e4.04 = 56.83 times more likely than the hypothesis of non-
normality. Even with 60 observations, that is pretty high. The H0: Normality vs. H2: Bi-modality comparison shows
that the hypothesis of normality is e18.72 = 134894021 timesmore likely than the hypothesis of bi-modality. The third
comparison shows that the hypothesis of skewness is 1

e−1.15
= 3.15more likely than the hypothesis of normality.

NBA Players Experience

The NBA is one of the four major professional sports leagues in the United States and Canada. NBA players are the
world’s best paid athletes by average annual salary per player. The teams exist of older and younger players together.
Hypothetically, the distribution of the number of years of experience could be bi-modal, as some players stay in the
game for a long time and others are short-stayers. This data is collected fromNBA player records (N = 490).

F IGURE 16 The centered distribution of the number of years of experience in a sample of NBA baseball players (N
= 490). The strongest Bayes factor is in favor of bi-modality and equals 1

e−103
= 5.4e44. It is worth to note that the tests

for skewness both reveal that the data is skewed. If the data are investigated, that turns out to be not true.

Figure 16 seems like a bi-modal distribution, as it has much players with a standard deviation of -1 from themean an a
lot of players around a standard deviation of +.75 from themean. The Bayesianmethod shows that the data are strongly
non-normally distributed, and it is agreed upon by the frequentist Shapiro-Wilk test (p < .001). It is about 2e77 times
more likely that the data are non-normally distributed. TheH0: Normality vs. H2: Bi-modality comparison shows that
the hypothesis of bi-modality is 1

e−103
= 5.4e44 times more likely than the hypothesis of normality. With such strong

Bayes factors, it is highly reasonable to assume that the data can be seen as bi-modal.
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Geek Rating of Board Games

Sure, the classic board games likeMonopoly, Risk, and Battleship are still great fun. But the number of new games
has exploded in the last several years as designers think of new adventures, deck-building games, and zombie survival
games. But what effect did that have on the quality of the games? This data shows how self-proclaimed geeks rated
several board games after they played them (N = 5000). The data looks heavily skewed to the right, as there aremany
generic board games, while few really fun games are present. The distribution of data in Figure 17 is skewed, so it is
logical to expect that the new test should show this as well.

F IGURE 17 The centered distribution of the geek rating of board games (N = 5000). The data are heavily skewed to
the right, as the strongest Bayes factor tells us. It equals 1

e−1791
= ∞.

The frequentist tests agree to this conclusion, with the Shapiro-Wilk test showing that the data are non-normally
distributed (p <.001) andD’agostino’s test indicating that the data are skewed (p < .001). The Bayes factor in favor of
non-normality equals 1

e−941
= ∞, indicating that the data are strongly non-normal. The Bayes factor in favor of skewness

equals 1
e−1791

= ∞, indicating that it is likely that the data are skewed. The Bayes factor for bi-modality tells us that it is
more likely that the data are normally distributed than that it is bi-modal. This is a desired result, since there are no two
modes that can be identified, thereby validating this outcome.

All data sets and R scripts used to generate the previous figures can be found in the on-line appendix at https:

//osf.io/ydfuq/where, in addition to the examples in this thesis, other examples are available. Furthermore, the
code for a user-friendly R-function of the assumption check can be found in Appendix A. It takes three arguments, the
first of which is a vector of the data. The second argument is a logical indicating whether to compute Bayes factors
in favor of the null hypothesis (BF01) or in favor of the alternative hypothesis (BF10). The third argument is a logical
indicating whether to compute the logarithm of the desired Bayes factor.

https://osf.io/ydfuq/
https://osf.io/ydfuq/
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T-test Application

In order to show the potential application of this test, a scenario will be presentedwhere the idea of themethod
is implemented in a Bayesian independent samples t-test. The traditional idea of this test is to compare amodel with
two normal distributions with free parameters µ and σ against a model with two normal distributions fixed to the same
location (µmodel 1 = µmodel 2). If themodel with identical locations is preferred, the conclusion is drawn that it is more
likely that the two variables have no difference in the mean (e.g. the parameter µ) than that they have a difference
in themean. As always, by comparing the likelihood of themodels a Bayes factor for the comparison can be derived.
The new approach substitutes the normal distributions —used to do inference with the t-test— for mixture-normal
distributions. The idea here is that usingmixture-normal distributions instead of normal distributions better accounts
for deviations from normality in the data. Results show that themethod shows somewhat correspondencewith the
Bayesian independent samples t-test in JASP, a well-implemented version of the traditional test. Table 2 shows several
applications of the test on JASP’s example data sets. All information to reproduce the examples is again provided in the
on-line appendix at https://osf.io/ydfuq/.
TABLE 2 Results for the re-analysis of several data sets taken from JASP’s data library. The Bayes factors generated
by the newmethod correspondwith JASP in several cases.

Data Set N Dependent Grouping µ1 − µ2 BF01 (JASP) BF01 (Test)
Kitchen Rolls 102 mean_NEO Sex −0.355 26.671 164.92

Directed Reading Activities 44 drp group −9.954 2.217 0.0018

EyeMovements 49 CriticalRecall Condition 4.412 6.760 4.130338

Invisibility 24 Mischief Cloak −1.250 1.051 0.35

Table 2 shows that in half of the examples, the test yields the same result as JASP. However, in some cases the test
deviates from JASP’s result. It seems as if the test does not capture the direction of the data well. To confidently
conclude something about the performance of themethod, it is necessary to identify a trend in behavior and compare
it to the same trend in a Bayesian t-test based on normal distributions. Figure 18 shows exactly this, The blue line
quantifies the logarithm of BF10 —the Bayes factor in favor of the alternative hypothesis of non-normality— under a
test that assumes two normal distributions. The red line quantifies the logarithm of BF10 under the assumption of two
mixture-normal distributions. In the upper-left plot, the data comes from a normal distribution. In the upper-right
plot, the data comes from a skew-normal distribution. Lastly, in the bottom plot the data comes from amixture-normal
distribution.

https://osf.io/ydfuq/
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F IGURE 18 Plots showing the logarithm of the Bayes factors in favor of normality against non-normality (BF10) as a
function of the difference between the twomeans in the sample (N = 100). This relation was investigated for three
different types of data. The blue line quantifies BF10 under a test that assumes two normal distributions. The red line
quantifies BF10 under the assumption of twomixture-normal distributions. It can be seen that the test based on the
mixture-normal distributionsmore strongly quantifies evidence in favor of the null hypothesis.

Figure 18 shows that the two methods show very similar behavior, with the difference that the method based
onmixture-normal distributions yields higher Bayes factors in favor of the null hypothesis of no difference when the
difference in themeans is low and data are non-normally distributed. This is especially the case when data comes from a
mixture-normal distribution and is thus either bi-modal or non-normal. This observation represents a key improvement
because the evidence in favor of the null hypothesis of no difference from the normal-based test in these regions is
sparse. The method based on mixture-normal distributions yields Bayes factors in favor of the null hypothesis (e.g.
Log(BF) < 0) when the difference is small. The similar behavior of the two methods means that there are no loss of
informationwhile data is normal and skew-normal. However, there is a gain in information in favor of the null hypothesis
when data is mixture-normal, an advantage of the previousmethod. The newmethod quantifies stronger evidence in
favor of the null hypothesis when there is no difference and is therefore preferred to the normal method that quantifies
weaker evidence. Theremight bemore differences in behavior when simulating data with a smaller sample size (e.g. N =
50). Another possible explanation can be that the fact that the test based on normal distributions is highly sensitive to
differences. The user-friendly code for the t-test application is presented in Appendix B. It takes three arguments, the
first of which is a vector of the data in group 1. The second argument should be a vector of the data in group 2. The third
argument is a logical indicating whether to compute Bayes factors in favor of the null hypothesis (BF01) or in favor of
the alternative hypothesis (BF10). The third argument is a logical indicating whether to compute the logarithm of the
desired Bayes factor.

4 | DISCUSSION AND CONCLUSION

In this thesis it is shown that deviations from normality in the distribution of data can be assessed and quantified
using the Bayesian framework, comparing models that incorporate various distributions —like the mixture-normal
and the skew-normal distribution— to ultimately derive Bayes factors in favor of normality against non-normality,
bi-modality and skewness. At this point, it is important to remember that Bayes factors quantify relative evidence for
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bothmodels and cannot be treated as absolute truth. This means that, even if bothmodels fit the data poorly, high Bayes
factors can still be the outcome of the analysis. To relate this to the assumption check, an overwhelming Bayes factor in
favor of bi-modality does not mean that the data are truly bi-modal. It merely means that data are more likely to be
bi-modal than to be normal. In conclusion, the behavior of the Bayes factors has been elaborated on in different data
scenarios, showing the influence of the sample size and the non-normality parameters. Recommendations for priors on
the variousmodel parameters have been given and themethod has been put to work in several real-life data examples.
Finally, the method has been implemented in an existing test —a Bayesian independent samples t-test— to show its
potential application for other purposes than an assumption check. JASP data have been used so that the reader can
reproduce all examples if desired. All data, R code, additional information and files can be found in the on-line appendix
at https://osf.io/ydfuq/.

A point of critique on this work is the fact that, when comparing the normal model against the skew-normal
model, the skew-normal model is only weakly preferred (Figure 11, right column). This is problematic, since these
specific comparisons are not able to produce convincing Bayes factors to support the conclusion that data are normally
distributed. A possible explanation for this is that it might be due to the fact that the skew-normal model only has one
extra parameter in comparison with the normal model. Themixture-normal with two location parameters has two extra
parameters. This can cause the skew-normal to only receive a slight penalty, one that is not enough to prefer the normal
model. Another explanation is that, since data are never perfectly normal, this comparisonmight be too sensitive to
abnormalities in the data due to the inflexibility of the normal model. Therefore it is wise to not take the normal vs.
skew-normal comparison into account when detecting of (non-)normality, as this is a flawed conclusion.

The comparisons featuring themixture-normal distribution (e.g. normal vs. non-normal&normal vs. bi-modal) seem
to be sensitive to the size of the sample. For example, mixture-normal data withmeans of -1 and 1will be identified as
normalwhen the sample size is small (Figure 11, left column). In contrast, the conclusionwill lean towards non-normality
when the sample size becomes significantly bigger. This could potentially lead to biased conclusions, as it seems that any
small deviation from normality could be evidence for the preference of themixture-normal model. However, this could
also be an advantage for the comparison. Because the distribution of data becomesmore specific when there aremore
observations, demands for normality should become higher. That means that these slight deviations from normality are
desired to be recognized by the comparison.

As for the restrictedmixture-normal model, a drawback inmodeling bi-modality seems to be the fact that it has
difficulties fitting onto data that is in the range −1 < x < 1. Because of its restriction that themean of each distributions
should lie at least at the number (-)1 or further away from zero, it is impossible for the restrictedmixture-normal model
to model data outside of this range. The inability of this model to fit onto data in the range −1 < x < 1will become
apparent when trying to fit themodel on small-ranged data. This drawback is remedied by standardizing the data. This
way the restriction will not undermine themodels ability to fit onto the data. However, standardizingmodifies the data
in such a way that it is only an approximation of the real data and in such, one is not really drawing conclusions about the
actual data.

A final improvement can be made in the application of the method in the Bayesian independent samples t-test.
In this scenario, themethod has difficulties expressing a Bayes factor in favor of the null hypothesis of no difference
when two mixture-normal distributions are used as underlying data distributions, but the actual data are normally
distributed. Figure 18 (upper-left plot) shows that in this case, the Bayes factor never indicates evidence in favor of the
null hypothesis. Even when the difference between themeans is zero, this happens. Not being able to quantify evidence
for the null hypothesis is an absolute problem for this test. However, this problem could be due to the sample size (N =

https://osf.io/ydfuq/
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100) used in the study. Despite the fact that a sample size of 100 should technically be able to provide evidence for the
null, it is worth to investigate what the behavior of the Bayes factors will be under a smaller sample size. However, it is
worth noting that Bayes factors using a normal-basedmethod show almost the same behavior, barely dropping below
zero.

In sum, this work provides researchers with a new tool to test for normality in the Bayesian framework. It has
been argued that this tool can successfully detect (non-)normality, bi-modality and skewness in a data distribution and
quantify Bayes factors in favor of normality against non-normality, bi-modality and skewness. Applications in a t-test
scenario are promising, as the current implementation provides stronger evidence in favor of the null hypothesis, an
advantage over the normal-based method. The R code in Appendix A and B should make it easy for researchers to
perform the assumption check and t-test, as they provide user-friendly R code that can be run instantly.
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APPEND IX A - R FUNCT ION FOR THE ASSUMPT ION CHECK

bayesian . normality <- function (data , bf10 = TRUE , Log = FALSE ){

# stanModelsAC . RData can be found at https :// osf .io/ pdb 8j/

load (" stanModelsAC . RData ")

library ( rstan )

library ( bridgesampling )

sink ( file =" undesiredFile . txt ") # Prevent printing sampling procedure

stanfitH 0 <- suppressWarnings ( sampling ( stanmodelH 0,

data = list (X = data , n = length ( data )) ,

iter = 2000, warmup = 500, chains = 1, cores = 4))

stanfitH 1 <- suppressWarnings ( sampling ( stanmodelH 1,

data = list (X = data , n = length ( data )) ,

iter = 2000, warmup = 500, chains = 1, cores = 4))

stanfitH 2 <- suppressWarnings ( sampling ( stanmodelH 2,

data = list (X = data , n = length ( data )) ,

iter = 2000, warmup = 500, chains = 1, cores = 4))

stanfitH 3 <- suppressWarnings ( sampling ( stanmodelH 3,

data = list (X = data , n = length ( data )) ,

iter = 2000, warmup = 500, chains = 1, cores = 4))

sink ()

# Bridge sampling

H0. bridge <- suppressWarnings ( bridge _ sampler ( stanfitH 0, silent = TRUE ))

H1. bridge <- suppressWarnings ( bridge _ sampler ( stanfitH 1, silent = TRUE ))

H2. bridge <- suppressWarnings ( bridge _ sampler ( stanfitH 2, silent = TRUE ))

H3. bridge <- suppressWarnings ( bridge _ sampler ( stanfitH 3, silent = TRUE ))

# Calculate Bayes factors for each hypothesis

BF_ normality <- bf(H2. bridge , H1. bridge , log = FALSE )$ bf

BF_ bimodality <- bf(H2. bridge , H0. bridge , log = FALSE )$ bf

BF_ skewness <- bf(H2. bridge , H3. bridge , log = FALSE )$ bf

# Adjust Bayes factors to preferences

if(bf10){

BF_ normality <- 1/BF_ normality

BF_ bimodality <- 1/BF_ bimodality

BF_ skewness <- 1/BF_ skewness

}

if( Log ){

BF_ normality <- log (BF_ normality )

BF_ bimodality <- log (BF_ bimodality )

BF_ skewness <- log (BF_ skewness )

}
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if(BF_ normality > 1){

BF_ normality <- round (BF_ normality , 3)

}

if(BF_ bimodality > 1){

BF_ bimodality <- round (BF_ bimodality , 3)

}

if(BF_ skewness > 1){

BF_ skewness <- round (BF_ skewness , 3)

}

returnObject <- list ( stanfitH 2, stanfitH 1, stanfitH 3, stanfitH 0,

H2. bridge , H1. bridge , H3. bridge , H0. bridge )

names ( returnObject ) <- c("H0. fit ", "H1. fit ", "H2. fit ", "H3. fit ",

"H0. bridge ", "H1. bridge ", "H2. bridge ", "H3. bridge ")

# Print the output

cat (" ### H0: The data distribution is normal \n")

cat (" ### H1: The data distribution is non - normal \n")

cat (" ### H2: The data distribution is bi - modal \n")

cat (" ### H3: The data distribution is skewed \n")

if (! Log ){

if(bf10){

cat (" ### BF10 equals ", BF_ normality , "\n")

cat (" ### BF20 equals ", BF_ bimodality , "\n")

cat (" ### BF30 equals ", BF_ skewness , "\n")

} else {

cat (" ### BF01 equals ", BF_ normality , "\n")

cat (" ### BF02 equals ", BF_ bimodality , "\n")

cat (" ### BF03 equals ", BF_ skewness , "\n")

}

} else {

if(bf10){

cat (" ### Log BF10 equals ", BF_ normality , "\n")

cat (" ### Log BF20 equals ", BF_ bimodality , "\n")

cat (" ### Log BF30 equals ", BF_ skewness , "\n")

} else {

cat (" ### Log BF01 equals ", BF_ normality , "\n")

cat (" ### Log BF02 equals ", BF_ bimodality , "\n")

cat (" ### Log BF03 equals ", BF_ skewness , "\n")

}

}

return ( returnObject )

}
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APPEND IX B - R FUNCT ION FOR THE T-TEST APPL ICAT ION

bayesian . ttest . mixtures <- function ( group 1Data , group 2Data ,

bf10 = TRUE , log = FALSE ){

# Stanmodels . RData can be found at https :// osf .io/wc6da/

load (" stanModels . RData ")

library ( rstan ); library ( bridgesampling )

sink ( file =" undesiredFile . txt ") # Avoid printing sampling procedure

# StanfitH 2: Model with free mixture - distributions

# StanfitH 3: Model with fixed mixture - distributions

stanfitH 2 <- suppressWarnings ( sampling ( stanmodelH 2,

data = list (N1 = length ( group 1 Data ), N2 = length ( group 2 Data ),

y1 = group 1Data , y2 = group 2 Data ),

iter = 2000, warmup = 500, chains = 1, cores = 4))

stanfitH 3 <- suppressWarnings ( sampling ( stanmodelH 3,

data = list (N1 = length ( group 1 Data ), N2 = length ( group 2 Data ),

y1 = group 1Data , y2 = group 2 Data ),

iter = 2000, warmup = 500, chains = 1, cores = 4))

sink ()

H2. bridge <- suppressWarnings ( bridge _ sampler ( stanfitH 2, silent = TRUE ))

H3. bridge <- suppressWarnings ( bridge _ sampler ( stanfitH 3, silent = TRUE ))

# Bayes factor in favor of a difference between the means

BF10 <- bf(H2. bridge , H3. bridge , log = FALSE )$ bf

if (! bf10){ BF10 <- 1/BF10 # Switch for BF01}

if( log ){ BF10 <- log (BF10) # Make Bayes factor logarithmic }

if(BF10 > 1){ BF10 <- round (BF10, 3) # Round the Bayes factor }

returnObject <- list ( stanfitH 3, stanfitH 2,H3. bridge , H2. bridge )

names ( returnObject ) <- c("H0. fit ", "H1. fit ", "H0. bridge ", "H1. bridge ")

# Print the output

cat (" ### H0: There is no difference in the two sample means \n")

cat (" ### H1: There is a difference in the two sample means \n ### \n")

cat (" ### Mean group 1: ", round ( mean ( group 1 Data ),3), "\n")

cat (" ### Mean group 2: ", round ( mean ( group 2 Data ),3), "\n")

cat (" ### Difference between means : ", round ( mean ( group 1 Data ) -

mean ( group 2 Data ),3), "\n ### \n")

if (! log ){

if(bf10){

cat (" ### BF10 equals ", BF10, "\n")

} else {
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cat (" ### BF01 equals ", BF10, "\n")

}

} else {

if(bf10){

cat (" ### Log BF10 equals ", BF10, "\n")

} else {

cat (" ### Log BF01 equals ", BF10, "\n")

}

}

return ( returnObject )

}
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