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Preface

This book, Statistical Audit Sampling with R, is intended as a practical guide
for auditors who wish to employ probability theory in their audit sampling activities.
While the focus of this book is exclusively on audit sampling, it aims to discuss the
topic from both the classical (frequentist) perspective and the Bayesian perspective.
By examining the subject through these two lenses, the book explains the statistical
theory behind commonly used audit sampling procedures and demonstrates how to
perform these procedures effectively and efficiently in accordance with international
auditing standards using the jfa R package.

Audits can be time-consuming and require going through lots of paperwork. But
when we find ways to make audits more efficient or understandable, we free up time
for auditors to do other important things. They can focus on coming up with new
ideas, foster innovation, and adressing the larger problems of our time. This not only
helps them grow as individuals but, perhaps more important, sparks a chain reaction
that will ripple through the audit. By clearing auditors’ time, we pave the way for
progress and a future where they can use their talents to make the world a better
place.

5
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Getting Started

This book is intended for auditors that want to obtain the knowledge and skill to
utilize statistical audit sampling in their practice using the R programming language.
It covers an array of traditional and innovative statistical tools that are available to
auditors, explaining their function, the underlying assumptions, and when they are
best utilized. In addition, it offers practical guidance on integrating advanced statis-
tical sampling methodology into audit practice and demonstrates its value through
real-world case studies. It is our hope that this book will serve as a valuable resource
for auditors looking to effectively and efficiently utilize statistical methods in their
practice.

The aim of this book is to address the need for a clear and transparent explanation of
the use of statistical sampling methodology in audit practice. Most guidance about
audit sampling (e.g., American Institute of Certified Public Accountants (AICPA)
(2016a); American Institute of Certified Public Accountants (AICPA) (2016b)) lacks
sufficient detail to allow for full transparency or a deep understanding. Additionally,
the implementation of statistical sampling methodology in practice is often even less
transparent, as theory and calculations are hidden from auditors in commercial closed-
source tools or in Excel sheets from audit guides used internally by audit firms (one
notable exception is Stewart (2012)). Thus, while attempting to comprehend the
theoretical aspects of statistical audit sampling, auditors may encounter numerous
relevant questions that are left unanswered by these tools. This book aims to clarify
the statistical methodology utilized in practice, thereby empowering auditors through
a comprehensive explanation.

This book discusses two philosphies to statistical audit sampling: the classical (fre-
quentist) philosophy and the Bayesian philosophy. By contrasting these two ap-
proaches, the book elucidates the statistical theory that underlies commonly used
audit sampling techniques and illustrates how to utilize these techniques in accor-
dance with international auditing standards. Additionally, the book demonstrates
the use of Bayesian statistical methods in auditing practice and highlights the practi-
cal advantages that these methods can offer for auditors.

The structure of this book is as follows: Chapter 2 introduces the basics of the
R programming language. Chapter 3 discusses the fundamental statistical theory
relevant to classical and Bayesian audit sampling. Subsequent chapters 4, 5, 6, 7
and 8 provide a more in-depth exploration of the use of these methods for statistical
planning, selection, and evaluation of audit samples. These chapters illustrate the
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Getting Started

practical differences and similarities between the classical and the Bayesian approach
through code and examples, thus requiring minimal programming knowledge to follow
along. Finally, Chapter 9 and 10 discuss other open-source software implementations
of audit sampling using R.

In each chapter, we aim to adhere to a consistent structure: beginning with motivating
examples to provide a broader context, and then delving into the specifics. Every
section of the book is accompanied by exercises designed to reinforce the concepts
learned. Although it may be tempting to skip the exercises, the most effective way to
learn is by applying the concepts to actual problems through practice.

Prerequisites
To run the code in this book, you will need three things: R, RStudio, and the jfa
package.

R
The Comprehensive R Archive Network (CRAN) is a collection of mirror servers
distributed globally that can be utilized to obtain both R and R packages. When
seeking to download R, it is recommended to utilize the cloud mirror located at
https://cloud.r-project.org, as it will automatically determine the most suitable
mirror for your location. Please ensure that you have at least R 3.5.0 installed for
the purposes of this book.

It is advisable to regularly update R, as new major versions are released annually and
minor releases occur two to three times per year. While upgrading can be inconvenient,
particularly for major versions which require the reinstallation of all packages, failing
to do so will only exacerbate the issue.

RStudio
RStudio is an Integrated Development Environment (IDE) specifically designed for the
R programming language. It can be downloaded and installed from the official website
(https://posit.co/downloads/). RStudio undergoes updates several times a year,
and users will be notified when a new version becomes available. It is recommended
to regularly upgrade RStudio to access the latest features. Please ensure that you
have at least RStudio 1.0.0 installed for the purposes of this book.

When you start RStudio, you’ll see three important regions in the interface: the
console, the environment and the output panel.

The console in the left panel allows you to run R code. To execute some R code, type
the code in the console (e.g., 1 + 1) and press Enter. When you stored the results of
a computation in a new variable (e.g., x <- 1 + 1), the variable is displayed in the
environment in the top right panel. The environment allows you to keep track of the
objects you have created during your R session. Finally, any plots that you request
are displayed in the output panel in the bottom right.
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Getting Started

Figure 1. The RStudio IDE with the three important regions: the console, the
environment, and the output panel. The console, located in the left panel, allows
users to execute R code. The environment, displayed in the top right panel, keeps
track of the variables and objects created in the session. The output panel, located
in the bottom right, shows the generated plots.

jfa
R has many packages and libraries that extend its capabilities and provide additional
functions and tools for data analysis and visualization. R packages are the core
building blocks of reproducible R code. They consist of reusable functions, the docu-
mentation describing how to utilize them, and sample data. Some popular packages
include dplyr for data manipulation, ggplot2 for data visualization, and caret for
machine learning. If you want to learn more about creating your own R package,
Wickam & Brian (2022) provide an excellent first-hand description of the principles
and practices of creating R packages.

To illustrate its concepts and ideas, this book uses the jfa package, an R package for
statistical auditing, which can also be downloaded from CRAN. This can be done via
the install.packages() function by providing the package name in quotes. Thus,
before running the examples in this book, you should install the jfa package by
running the following command in R:
install.packages("jfa")

Once you have installed a package, you must load it into every R session. To load
a package into your R session, call library() and provide the name of the package
(without quotes) that you want to load. For example, before running the examples in
this book, you should load the jfa package with:
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(a) dplyr (b) ggplot2 (c) jfa

Figure 2. R boasts an impressive amount of packages and libraries that enhance
its capabilities by providing additional features. For example, the (a) dplyr package
assists with data manipulation, the (b) ggplot2 package supports data visualization,
and the (c) jfa package facilitates statistical auditing.

library(jfa)

R packages are updated regularly. To update a package in your R library you should
call update.packages() and provide the name of the package that you want to update
in quotes. For example, each time there is a new release of the jfa package, you can
update it by running:
update.packages("jfa")

If you want to look at the source code of the jfa package, see the package website at
https://koenderks.github.io/jfa.

Running R Code
The code in this book appears as follows:
1 + 1
#> [1] 2

When executing the same code within your local console, the resulting output will
appear as follows:
> 1 + 1
[1] 2

There are two primary distinctions between the use of a console and the presentation
of code in the book. Firstly, in a console, the user inputs their code after the prompt
symbol (>) while the book does not display this symbol. Secondly, the output in
the book is commented out with #>, while in a console it is displayed directly after
the inputted code. Hence, those working with an electronic version of the book can
directly copy code from the book to the console.

10
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Colophon
An online version of this book is available at https://koenderks.github.io/sasr/.
The source code of the book is available at https://github.com/koenderks/sasr.
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Chapter 1

Audit Sampling

Auditors use audit sampling as a technique to assess a selection of transactions or
items within a population in order to form conclusions about the population as a
whole. It is a cost-efficient method for examining the accuracy of financial information
as it allows auditors to test a representative sample of the population rather than the
entire population.

In the field of auditing, sampling becomes necessary when the truth about a popula-
tion is not readily accessible or discernible through other means. With the advent of
modern technology, auditors often have access to an abundance of information about
a population, which sometimes enables them to perform full population (i.e., integral)
testing. Nonetheless, there are situations where a sample is still necessary due to
the unavailability of complete data. For instance, an auditor may utilize analytical
procedures to verify the consistency of payments with payment orders, but then must
subsequently confirm the validity of these orders through detailed testing.

In auditing, there are two primary methods of sampling: statistical and nonstatisti-
cal. Statistical sampling involves using probability theory to select a sample from the
population and draw conclusions about the population based on the sample. Nonsta-
tistical sampling, on the other hand, is based on the auditor’s professional judgment
and does not use statistical inference to come to a conclusion. This book does not
cover nonstatistical sampling.

International auditing standards prescribe the manner in which statistical sampling
should be conducted in an audit. The following section discusses what these standards
require from the auditor’s approach to statistical sampling.

1.1 Auditing Standards
There are three auditing standards related to staistical sampling in the audit:

• ISA 530: Auditing standard for international firms published by the Interna-
tional Auditing and Assurance Standards Board (IAASB).
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• AU-C 530: Auditing standard for private firms published by the American In-
stitute of Certified Public Accountants (AICPA).

• AS 2315: Auditing standard for public firms published by the Public Company
Accounting Oversign Board (PCAOB).

All three standards present a similar explanation of statistical sampling. For instance,
ISA 530 (International Auditing and Assurance Standards Board (IAASB), 2018)
defines statistical audit sampling as a method that at minimum exhibits the following
two characteristics:

• Random selection of sample items,
• The use of an appropriate statistical technique to evaluate sample results, in-

cluding measurement of sampling risk.

According to auditing standards, any sampling approach that lacks these two charac-
teristics is considered nonstatistical sampling.

In order to effectively utilize statistical sampling during an audit, it is necessary to
tailor the approach to the specific circumstances of the audit. This may involve
considering factors such as the size and complexity of the population, the materiality
of the items being tested, and the level of inherent risk in the audit area. It is also
essential for the auditor to document the sampling process in order to demonstrate
compliance with auditing standards. The following sections will delve further into
these crucial concepts in the context of statistical audit sampling.

1.2 Important Concepts
This section aims to delve into several theoretical concepts that are integral to statis-
tical audit sampling.

1.2.1 Materiality
In an audit, materiality is the maximum amount of misstatement that can be present
in the financial statements of the auditee before the auditor concludes that the finan-
cical statements are materially misstated, meaning that they contains misstatements
that would influence the decisions of stakeholders relying on those statements.

The term performance materiality refers to the maximum amount of misstatement
that can be present in a given population that is part of the financial statements
before the auditor concludes that the population is materially misstated. Performance
materiality is used by auditors to determine the appropriate level of testing to be
performed on a population. The performance materiality is usually defined to be
lower than the materiality because an individual population that is subject to audit
sampling is often only a (small) part of the financial statements.

For example, consider an audit of a company’s financial statements for the year ended
December 31, 2021. The auditor determines that the company’s accounts receivable
balance is a large part of to the financial statements and decides to test a sample
of the accounts receivable transactions to assess the accuracy of the balance. The
auditor calculates the performance materiality for the accounts receivable balance by
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considering the materiality for the financial statements as a whole. If the auditor finds
misstatements in the sample such that their estimate of the misstatement exceeds the
performance materiality, the auditor would need to express an unqualified opinion on
the population or would need to perform additional testing on the population. If the
auditor finds misstatements in the sample such that their estimate of the misstatement
does not exceed the performance materiality, the auditor would express a positive
opinion on the financial statements.

1.2.2 Audit risk
After completing an audit and making any necessary corrections, an auditor will
issue a written report stating whether the financial statements are accurate and free
of material misstatement. The potential for this opinion to be incorrect is known as
audit risk, and it is the auditor’s job to minimize this risk as much as possible.

For example, during an audit of a company’s financial statements, the auditor may
carefully review documentation, perform tests of details via audit sampling, and speak
with management in order to reduce the audit risk and provide a reliable opinion on
the accuracy of the financial statements as a whole.

1.2.3 Population
In statistical inference, the term population refers to the entire group of individuals
or items that have some common characteristic or interest, and about which we want
to gather data or make inferences. A population can be as large as all the people in
a country or, as is more sensible in auditing, as small as a group of employees in a
specific department of a company.

For example, consider an audit of a company’s payroll records. The population in this
case would be all the employees of the company, and the goal of the audit would be
to gather data on their salaries, benefits, and other payroll-related information. The
audit team would collect this data from a a representative group of employees (i.e., a
sample) of the population and use statistical methods to draw conclusions about the
entire population.

1.2.4 Sampling risk
There is a possibility that the results of an audit based on a sample may differ from
the results if the entire population were examined using the same procedures. This is
known as sampling risk. Sampling risk can result in two types of incorrect conclusions:

1. The first type is when, in a test of controls, the controls are perceived to be more
effective than they actually are, or in a test of details, a material misstatement is
believed to not exist when it actually does. This type of erroneous conclusion is
particularly concerning for auditors because it can compromise the effectiveness
of the audit and may lead to an inappropriate audit opinion.

2. The second type of incorrect conclusion is when, in a test of controls, the controls
are perceived to be less effective than they actually are, or in a test of details, a
material misstatement is believed to exist when it actually does not. This type

17
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of erroneous conclusion impacts the efficiency of the audit as it may require
additional work to determine that the initial conclusions were incorrect.

Many audits are performed according to the audit risk model (ARM), which deter-
mines that the uncertainty about the auditor’s statement as a whole is a factor of
three terms: the inherent risk, the control risk, and the detection risk (i.e., the sam-
pling risk). Inherent risk is the risk posed by a misstatement in the auditees financial
statements that could be material, before consideration of any related control systems
(e.g., computer systems). Control risk is the risk that a material misstatement is not
prevented or detected by the auditee’s internal control systems. Detection risk is the
risk that the auditor will fail to find material misstatements that exist in the auditee’s
financial statements. The ARM is practically useful because, for a given level of audit
risk, the tolerable detection risk bears an inverse relation to the other two risks.

Audit risk = Inherent risk × Control risk × Detection risk (1.1)

Usually the auditor judges inherent risk and control risk on a three-point scale con-
sisting of low, medium, and high. Different audit firms handle different standard
percentages for these categories. Given an assessment of the inherent risk and the
control risk, the detection risk can be calculated as:

Detection risk = Audit risk
Inherent risk × Control risk (1.2)

Let’s consider an example. Suppose that, in their audit guide, an audit firm associates
the following percentages with the categories high, medium and low:

• High: 100 percent
• Medium: 60 percent
• Low: 50 percent

If an auditor is working with an audit risk of 0.05, or five percent, and judges inherent
and control risk to both be medium, the sampling risk can be calculated as:

0.05
0.6 × 0.6 = 0.139 (1.3)

Note that the ARM is commonly used in practice but it is not a proper model of
audit risk. For example, it is not possible to set one of the risks to zero, as that would
result in an infinite detection risk (e.g., 0.05

0×1 = ∞).

1.2.5 Sample Size
The sample size is an important consideration in the context of audit sampling, as
it determines the number of items that will be selected for testing during the audit
process. This factor has an impact on both effectiveness and efficiency. In general, a
larger sample size can provide a higher level of assurance, but it requires more audit
effort to obtain and inspect. On the other hand, a smaller sample size offers a lower
level of assurance, but it is less costly.

18
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1.2.6 Notation
The table below summarizes the notation used in this book (middle column) and in
the jfa R package (right column).

Meaning Symbol jfa
Probability of misstatement 𝜃
Performance materiality 𝜃𝑚𝑎𝑥 materiality
Expected deviation rate 𝜃𝑒𝑥𝑝 expected
Type-I error probability 𝛼 1 - conf.level
Type-II error probability 𝛽
Population size 𝑁 N.units
Population misstatements 𝐾
Sample size 𝑛 n
Observed misstatements 𝑘 x

19
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Chapter 2

Statistical Inference

In the field of probability theory, two prominent schools of thought have emerged:
frequentism and Bayesianism. These two approaches offer distinct perspectives on
how to interpret and reason about uncertainty and probability.

2.1 Classical Inference
Frequentist statistics, also known as classical statistics, is a statistical framework
that is based on the concept of probability as a long-term frequency of events. This
approach assumes that parameters in a statistical models have a true but hidden value
and that data is generated by a well-defined process, which can be described by a set
of probabilistic assumptions about the model parameters. The philosophy behind
frequentist statistics is that statistical estimates should be based on the frequency
of events over a long term, rather than on subjective or personal information. This
statistical approach is particularly useful for making predictions or decisions based on
data, as it allows for the calculation of confidence intervals and statistical tests, which
provide a measure of the reliability of the estimates. Overall, frequentist statistics
is a rigorous and reliable approach that is widely used in the scientific community
for making decisions based on data. However, as we will discuss, it also has some
drawbacks that make it less suitable for use in audit practice.

2.1.1 Estimation
The philosophy behind frequentist parameter estimation is based on the idea that sta-
tistical parameters are fixed, but unknown, quantities that can be estimated through
the process of repeated sampling. This approach assumes that the sample data rep-
resent a random sample from the population, and that the sample statistics (i.e.,
the sample proportion of misstatements) can be used to estimate the corresponding
population parameters (i.e., the population misstatement). The key principle of fre-
quentist estimation is that the estimated parameter values should be unbiased and
have a certain level of uncertainty, which can be quantified through confidence bounds
or intervals.
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2.1.1.1 Example

As an example, the binom.test() function in R can be used to estimate the rate
of misstatement in a population given a data sample of 𝑛 items containing 𝑘 mis-
statements. Suppose an auditor audited a sample of 𝑛 = 60 items containing 𝑘 = 0
misstatements. To use the binom.test() function to perform estimation, the auditor
must input the number of items in the sample n = 60 and the number of misstate-
ments in the sample x = 0. The sampling risk is set to 0.05, or five percent, which
the auditor can provide to the function with conf.level = 1 - 0.05. Finally, the
auditor can specify the alternative hypothesis as alternative = "less" to compute
a one-sided confidence interval since they are interested in obtaining the upper confi-
dence bound.
binom.test(x = 0, n = 60, alternative = "less", conf.level = 1 - 0.05)
#>
#> Exact binomial test
#>
#> data: 0 and 60
#> number of successes = 0, number of trials = 60, p-value < 2.2e-16
#> alternative hypothesis: true probability of success is less than

0.5↪

#> 95 percent confidence interval:
#> 0.00000000 0.04870291
#> sample estimates:
#> probability of success
#> 0

The most likely misstatement in the population is displayed under sample estimates
and is 0, or zero percent. The 95 percent upper confidence bound for the estimate of
the population misstatement is displayed under 95 percent confidence interval
and is 4.87 percent.

2.1.2 Hypothesis Testing

Frequentist hypothesis testing is a statistical method that involves evaluating the
probability of obtaining a certain sample outcome or more extreme, given a certain
assumption or hypothesis. This probability, known as the p-value, is used to determine
the likelihood of the hypothesis being true.

For example, in a typical audit sampling hypothesis test using the binomial distribu-
tion, we may be interested in testing the hypothesis that the misstatement is higher
or lower than the performance materiality. We would inspect a sample and calculate
the p-value based on the observed frequency of misstatements versus the expected
frequency under the assumption of material misstatement. If the p-value is below the
sampling risk 𝛼, we reject the hypothesis that the population is materially misstated
and conclude that it is not materially misstated.
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Figure 2.1. Innovating statistical methods and shaping the field of genetics, Sir
Ronald Fisher was a pioneer in the world of science. Image available under a CC-BY-
NC 4.0 license.

2.1.2.1 Example

Next to estimation, the binom.test() function in R can also be used to test if a
population contains is free of material misstatement, which in this case means that
the population contains less than three percent misstatements. Suppose an auditor
obtained a sample of 𝑛 = 100 items containing 𝑘 = 0 misstatements. To use the
binom.test() function, the auditor must input the number of items in the sample
n = 100, the number of misstatements in the sample x = 0, and the hypothesized
proportion of misstatement in the population (i.e., the performance materiality) p
= 0.03. The sampling risk is set to 0.05, or five percent, which the auditor can
provide to the function with conf.level = 1 - 0.05. This is the default value
and therefore this argument is omitted in the code below. Finally, the auditor can
specify the alternative hypothesis as alternative = "less" to test if the proportion
of misstatements in the sample is less than the hypothesized proportion.
binom.test(x = 0, n = 100, p = 0.03, alternative = "less")
#>
#> Exact binomial test
#>
#> data: 0 and 100
#> number of successes = 0, number of trials = 100, p-value = 0.04755
#> alternative hypothesis: true probability of success is less than

0.03↪

#> 95 percent confidence interval:
#> 0.00000000 0.02951305
#> sample estimates:
#> probability of success
#> 0

The p-value is shown under p-value and is 0.04755. Since the p-value is lower than the
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specified sampling risk 𝛼, the auditor can reject the hypothesis that the population
contains material misstatement and should conclude that the population does not
contain material misstatement.

2.2 Bayesian Inference
Bayesian inference (Jeffreys, 1939, 1948, 1961) is based on the idea that the pa-
rameters in a statistical model are not fixed but uncertain. In this approach, the
misstatement in the population is considered to be a random variable with a cer-
tain distribution, and the goal is to use the data and any prior knowledge about the
parameter to update our belief about its value. This is typically done using Bayes’
theorem, which states that the posterior probability (i.e., the updated belief about
the parameter after seeing the data) is equal to the prior probability (i.e., the belief
about the parameter before seeing the data) times the likelihood (i.e., the probability
of the data given the parameter).

Posterior ∝ Likelihood × Prior (2.1)

Bayesian statistics is a more nuanced approach that allows for more efficiency in
statistical audit sampling (Steele, 1992), but it requires the specification of prior
distributions that can be difficult to quantify. That is because, especially in an audit,
all information that is incorporated into the statistical analysis should be based on
audit evidence and should be properly justified.

2.2.1 Estimation
One major difference between classical and Bayesian statistics is the way they handle
uncertainty. In classical statistics, uncertainty is represented by the standard error of
an estimate, which is a measure of the precision of an estimate. In Bayesian statistics,
uncertainty is represented by the posterior distribution, which is a distribution of
the possible values of the population parameter given the sample data and our prior
beliefs. Bayesian inferences uses uses Bayes’ theorem to update the prior beliefs about
the population parameter with the new information from the sample data. Bayes’
theorem is given by the following formula:

𝑝(𝜃|𝑦) = 𝑝(𝑦|𝜃)𝑝(𝜃)
𝑝(𝑦) (2.2)

where 𝑝(𝜃|𝑦) is the posterior probability of the population parameter 𝜃 given the
sample data 𝑦, 𝑝(𝑦|𝜃) is the likelihood of the sample data given 𝜃, 𝑝(𝜃) is the prior
probability of 𝜃, and 𝑝(𝑦) is the total probability of the sample data occurring. Be-
cause with a fixed sample 𝑝(𝑦) is a constant, Bayes’ theorem is often given as follows:

𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃) × 𝑝(𝜃) (2.3)
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Figure 2.2. Thomas Bayes revolutionized the world of statistics and probability with
his groundbreaking work on Bayes’ Theorem. His contributions continue to shape the
way we understand and analyze data today. Image available under a CC-BY-NC 4.0
license.

2.2.1.1 Example

Bayesian inference involves first specifying a prior distribution that captures the avail-
able information about the probability of misstatement in the population. For illustra-
tive purposes, we use a simple prior distribution that is indifferent about the possible
values of the misstatement. Note that this prior distribution does not contain any
information about the probability of misstatement, but yields statistical results that
closely resemble classical outcomes. This prior distribution is shown in Figure 2.3.
Chapters 3, 4, 5 and 6 dive deeper into the R functions from the jfa package used in
this example, such as the auditPrior() function below.
prior <- auditPrior(method = "default", likelihood = "binomial")
plot(prior)
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Figure 2.3. A uniform prior distribution assigning equal probability to every possible
value of the population misstatement 𝜃.

After seeing an item from the population, the prior distribution is updated to the
posterior distribution by means of Bayes’ theorem. Next, the posterior is used as a
prior distribution for the following item, which is once again updated to a posterior
distribution after seeing another the item. This process of updating the prior distri-
bution to a posterior distribution, and using the posterior as a prior can continue
indefinately. For example, after seeing 30 items from the population, of which none
contained a misstatement, the posterior distribution peaks at zero, reflecting the fact
that no misstatements were found, and its mass has shifted towards zero when com-
pared to the prior distribution, reflecting the fact that the data contained information
that indicates a low probability of misstatement. Figure 2.4 displays the prior and
posterior distribution.
eval <- evaluation(x = 0, n = 30, method = "binomial", prior = prior)
plot(eval, type = "posterior")
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Figure 2.4. The prior and posterior distribution after seeing a sample of 𝑛 = 30
items, of which none contained a misstatement. After seeing these data, lower values
of the population misstatement now receive a relatively high probability.

The most likely value of the population misstatement based on these data is shown as
a point above the highest point of the posterior distribution. The uncertainty about
the population misstatement can be quantified using a credible interval (shown as a
line above the posterior distribution). In this case, the figure above shows a 95 percent
credible interval, which contains the true value of the population misstatement with
a 95 percent probability.

After seeing 30 more observations, of which none contained a misstatement, the mass
of the posterior distribution has shifted towards zero even more. The credible in-
terval shown above the posterior distribution encompasses a smaller range of values,
reflecting the fact that additional information has been observed and thus that there
is less uncertainty about the population misstatement than before. This is displayed
in Figure 2.5.
eval <- evaluation(x = 0, n = 30, prior = eval$posterior)
plot(eval, type = "posterior")
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Figure 2.5. The prior and posterior distribution after seeing a second sample of 𝑛
= 30 items, of which none contained a misstatement. The posterior distribution is
relatively less wide than in the previous example.

The updating process works the same for the scenario in which the auditor finds
misstatements in the sample. For example, the posterior distribution after finding a
single misstatement is has its mass shifted away from zero, reflecting the fact that a
probability of zero is unlikely given the sample data, see Figure 2.6.
eval <- evaluation(x = 1, n = 1, prior = eval$posterior)
plot(eval, type = "posterior")
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Figure 2.6. The prior and posterior distribution after seeing a third sample of a
single item which contained a misstatement. Given this item on top of the other
items in the sample, the posterior distribution does not peak at zero anymore.

2.2.2 Hypothesis Testing
The Bayes factor is a measure used in Bayesian inference to compare the relative
strength of evidence between two competing hypotheses. The Bayes factor is cal-
culated by comparing the probability of the observed data given each of the two
competing hypotheses. This probability is known as the likelihood of the data. The
Bayes factor is then the ratio of the likelihood of the data under one hypothesis to the
likelihood of the data under the other hypothesis. The Bayes factor can be used in
the context of an audit, where the auditor is trying to determine the likelihood that
a particular financial statement is represented fairly or not.

For example, an auditor might be evaluating the fairness of a company’s financial
statements for the year. They have two hypotheses: the first is that the statements
are accurate, and the second is that the statements are not accurate. The auditor
gathers data from a statistical audit sample and uses this data to calculate the Bayes
factor.

The Bayes factor is calculated by taking the ratio of the probability of the first hypoth-
esis (that the statements are accurate) given the observed data, to the probability of
the second hypothesis (that the statements are not accurate) given the observed data.
The higher the Bayes factor, the more likely it is that the first hypothesis is true.

The Bayes factor can be used to assess the strength of evidence for one hypothesis
over the other and to determine which hypothesis is more likely to be true given the
observed data. It is often used in scientific research to help evaluate the validity of
different hypotheses and to make informed decisions based on the available evidence.
For auditors, the Bayes factor can be a useful tool to determine the likelihood of
different hypotheses being true based on the data they have collected, and it can help
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them make informed decisions about the fairness of the financial statements.

For example, if the Bayes factor is 5, this means that the probability of the statements
being accurate given the observed data is 5 times higher than the probability of them
being not accurate. In this case, the auditor would be more likely to conclude that
the financial statements are accurate.

Figure 2.7. Sir Harold Jeffreys innovated statistical hypothesis testing with his
Bayes factor approach, helping us make better decision in the face of uncertainty.
Image available under a CC-BY-NC 4.0 license.

2.2.2.1 Example

Suppose an auditor obtained a sample of 𝑛 = 100 items containing 𝑘 = 0 misstate-
ments. Given the number of items in the sample n = 100, the number of misstate-
ments in the sample x = 0, and the hypothesized proportion of misstatement in the
population (i.e., the performance materiality) p = 0.03 the Bayes factor is displayed
under BF10 and is 668.65, meaning that it the data are about 668 times more likely
to occur under the hypothesis of tolerable misstatement than under the hypothesis of
intolerable misstatement.
evaluation(materiality = 0.03, x = 0, n = 100, method = "binomial",

prior = TRUE)↪

#>
#> Bayesian Audit Sample Evaluation
#>
#> data: 0 and 100
#> number of errors = 0, number of samples = 100, taint = 0, BF�� =
#> 668.65
#> alternative hypothesis: true misstatement rate is less than 0.03
#> 95 percent credible interval:
#> 0.00000000 0.02922515
#> most likely estimate:
#> 0
#> results obtained via method 'binomial' + 'prior'
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Chapter 3

Sampling Workflow

The audit sampling workflow involves a series of steps that help auditors select a rep-
resentative sample from a population of transactions or items, and then use statistical
analysis to draw conclusions about the entire population. It consists of four stages:
planning, selection, execution and evaluation. Probability theory can be employed in
three of these stages.

Figure 3.1. The standard audit sampling workflow consists of four stages: planning,
selection, execution and evaluation.

In the planning stage, auditors lay the foundation for an effective and efficient au-
dit sample. Careful planning allows auditors to determine the appropriate sample
size, considering factors such as the desired level of assurance, the risk of material
misstatement, and the available resources. This stage involves understanding the ob-
jectives of the audit, identifying relevant population characteristics, and considering
any constraints or limitations. Probability theory can be applied in this stage to
help auditors quantify the level of confidence they aim to achieve and make informed
decisions about the sample size and selection methodology.

The selection stage focuses on the actual sampling process. Auditors employ various
techniques to choose a representative sample that accurately reflects the characteris-
tics of the population under investigation. This stage often involves random sampling
methods, such as simple random sampling or stratified sampling, to ensure that each
item in the population has an equal or known chance of being included in the sample.
Probability theory plays a fundamental role in sample selection, as it provides the
theoretical framework to ensure unbiased and statistically valid sampling methods.

Once the sample has been selected, the execution stage comes into play. During this
stage, auditors carry out tests of details and inspections on the items in the sample.
They examine financial information, scrutinize supporting documents, and perform
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other procedures to assess the accuracy, completeness, and fairness of the selected
items. The execution stage relies on auditing techniques and procedures specific to the
nature of the audit engagement. While statistical inference is not typically employed
during this stage, the execution phase provides the groundwork for the subsequent
evaluation stage.

In this chapter of the book, we will explore the intricacies of the standard audit sam-
pling workflow and demonstrate how it can be implemented using the powerful tools
and techniques available in R. By understanding the various stages of the workflow
and leveraging the capabilities of statistical analysis in R, auditors can enhance the
efficiency and effectiveness of their audit procedures. Throughout this chapter, we
will delve into the practical aspects of each stage, providing examples and step-by-
step guidance to equip auditors with the necessary knowledge and skills to navigate
the audit sampling process successfully.

3.1 Stage 1: Planning
The first stage in the audit sampling workflow is the planning stage. Proper planning
of a sample plays a crucial role in enhancing audit efficiency. When auditors select a
small sample, the audit effort required is relatively low. However, this approach may
not provide a high level of assurance since the sample may not accurately represent the
entire population of transactions or items under audit. On the other hand, auditing
a larger sample increases the level of assurance but demands more audit effort and
resources.

Figure 3.2. The planning stage is the first stage in the audit sampling workflow.

To strike a balance between efficiency and assurance, it is beneficial to determine
the sample size in advance. By carefully considering various factors, auditors can
optimize the sample size to meet the objectives of the audit engagement. Factors
such as the desired level of confidence, acceptable precision, materiality thresholds,
and the nature of the population being examined all influence the determination of
the optimal sample size.

In Chapter 4, we will delve into the intricacies of planning an audit sample and
explore the factors that should be taken into account. We will discuss the importance
of understanding the characteristics of the population, identifying relevant risk factors,
and applying statistical techniques to ensure an appropriate sample size. Furthermore,
we will demonstrate how R can be leveraged to facilitate the sample planning process.
R provides a wide range of tools and functions that aid in sample size calculations via
the jfa package, allowing auditors to make informed decisions based on quantitative
analysis.

By comprehensively addressing the considerations involved in sample planning and
utilizing the capabilities of R, auditors can optimize the efficiency and effectiveness of
their sampling procedures. This, in turn, contributes to the reliability and quality of
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the audit results, enabling auditors to provide valuable insights and recommendations
to stakeholders.

3.2 Stage 2: Selection
The second stage in the audit sampling workflow is the planning stage.

Selecting a sample is the second step in the audit sampling workflow and plays a
crucial role in obtaining a representative subset of the population for examination. In
Chapter 5, we will delve into the intricacies of selecting an audit sample and explore
a range of approaches and techniques that can be employed using R.

Figure 3.3. The selection stage is the second stage in the audit sampling workflow.

The selection of an audit sample requires careful consideration of factors such as
the sampling method, sample size, and sampling frame. We will discuss popular
sampling methods, including simple random sampling, fixed interval sampling, and
cell sampling. Each method has its own advantages and considerations, and we will
provide insights on when and how to effectively use them based on the characteristics
of the population under audit.

Furthermore, we will explore the utilization of R to implement the sample selection
techniques discussed. R provides a wide range of functions and packages specifically
designed for sampling and randomization via the jfa package, making it an ideal tool
for auditors seeking to streamline their sampling processes and enhance efficiency.

To ensure a comprehensive understanding of the material, we will present practical
examples and demonstrate how these selection techniques can be applied in real-world
audit scenarios. By examining these examples, you will gain practical insights into the
application of different sampling methods, learn to navigate potential challenges, and
develop a deeper understanding of the impact of sampling choices on the reliability
and effectiveness of audit procedures.

By the end of Chapter 5, you will have a solid grasp of the various approaches and
techniques available for selecting an audit sample, equipped with the knowledge and
practical skills to implement them using R. This knowledge will enable you to make
informed decisions regarding sample selection and enhance the overall quality and
efficiency of your audit engagements.

3.3 Stage 3: Execution
The execution stage of the audit sampling process is a hands-on phase where the au-
ditor meticulously examines a carefully chosen selection of items from the population
under scrutiny. In this stage, the auditor focuses on assessing the accuracy, com-
pleteness, and fairness of the items in question. Through a combination of analytical
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procedures, substantive testing, and detailed scrutiny of relevant documentation, the
auditor seeks to gather concrete evidence and form objective judgments about the
quality and integrity of the sample items.

Unlike the previous stages that heavily rely on statistical inference, the execution
stage predominantly involves manual labor and detailed examination of the selected
items. The auditor applies their expertise, professional judgment, and industry-
specific knowledge to delve into the intricacies of each item, scrutinizing transactions,
verifying supporting documentation, and assessing compliance with relevant regula-
tions and accounting principles.

During this stage, auditors meticulously analyze financial statements, delve into under-
lying records, evaluate the authenticity of documents, and engage in interviews with
key personnel. They perform detailed tests and inspections to identify potential dis-
crepancies, irregularities, or areas of concern that may warrant further investigation.
This rigorous examination enables the auditor to gain a comprehensive understand-
ing of the accuracy, validity, and completeness of the sample items and helps them
uncover potential red flags or areas where misstatements or irregularities may occur.

While the execution stage does not directly involve statistical inference, it plays a
crucial role in gathering firsthand evidence, obtaining a deeper understanding of the
audited items, and establishing a solid foundation for subsequent evaluation. The
information and insights gathered during this stage form the basis for drawing mean-
ingful conclusions about the entire population and provide a vital context for the
subsequent statistical analysis performed in the evaluation stage.

In summary, the execution stage represents a meticulous and labor-intensive phase
of the audit sampling process. Through detailed examinations and analyses, auditors
ensure the accuracy, fairness, and compliance of the selected items. By conducting
thorough manual inspections, auditors gather valuable evidence that serves as a cor-
nerstone for the subsequent stages of the audit, ultimately contributing to the overall
reliability and integrity of the audit findings.

3.4 Stage 4: Evaluation
The final stage in the audit sampling workflow is the evaluation stage, which plays a
crucial role in drawing meaningful conclusions and making informed decisions based
on the results obtained from the selected sample. During this stage, auditors employ
various statistical tests, metrics, and estimation techniques to assess the findings and
extrapolate them to the entire population.

Figure 3.4. The evaluation stage is the final stage in the audit sampling workflow.

In the evaluation stage, auditors aim to estimate the extent of misstatement or devia-
tion from expected values within the population. They analyze the sample data and
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apply statistical procedures to quantify the level of confidence or uncertainty associ-
ated with the findings. This enables auditors to provide a reliable assessment of the
population’s characteristics, identify potential risks, and evaluate the effectiveness of
internal controls.

Statistical techniques commonly used in the evaluation stage include point estimation,
interval estimation, and hypothesis testing. Point estimation involves estimating pop-
ulation parameters, such as the mean or proportion, based on the sample statistics.
Interval estimation provides a range of plausible values for the population parameter,
accompanied by a confidence level. Hypothesis testing allows auditors to test specific
claims or hypotheses about the population based on the sample data.

In Chapter 6, we will examine the methods and techniques utilized to evaluate an
audit sample from both a classical and Bayesian point of view. We will delve into
the diverse range of statistical tests and metrics that can be applied to estimate
the population misstatement and quantify the strength of evidence for or against a
hypothesis based on the sample data.

Through detailed explanations and practical examples, you will gain a comprehensive
understanding of how to effectively and efficiently evaluate an audit sample using R.
You will learn how to interpret the results obtained from statistical tests and metrics,
enabling you to make informed decisions in the context of the audit engagement.
This chapter will equip you with valuable skills to assess the reliability of the audited
information and provide meaningful insights to stakeholders.

Furthermore, Chapter 7 expands upon these evaluation methods and explores their
generalization to stratified samples. Stratification allows auditors to partition the
population into subgroups or strata based on specific characteristics. By evaluating
samples within each stratum, auditors can obtain more detailed and targeted infor-
mation about different segments of the population. We will discuss the application
of evaluation techniques to stratified samples, enabling you to enhance the precision
and accuracy of your audit conclusions.

By the end of Chapter 7, you will have a comprehensive toolkit to evaluate audit
samples, whether they are obtained from simple random sampling or more complex
stratified sampling designs. This knowledge will empower you to conduct thorough
and rigorous audits, ensuring the reliability and integrity of the financial information
under examination.
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Chapter 4

Planning

One of the key considerations in audit sampling is determining the appropriate sample
size to reduce the sampling risk to an appropriately low level, while minimizing audit
effort. To quantify the sampling risk, it is necessary to specify the statistical model
that connects the data to the population misstatement, referred to as the likelihood.
This chapter will delve into three standard likelihoods commonly employed in audit
sampling: the hypergeometric likelihood, the binomial likelihood, and the Poisson
likelihood.

Note that planning is a game of optimization that could be avoided. If you are using
the Bayesian approach to audit sampling, it is not required to plan a specific sample
size in advance (Derks et al., 2022b). That is because in Bayesian inference, the
posterior distribution after seeing each item is used as the prior distribution for the
next item. That means that you can simply start sampling and monitor the evidence
in the data over time. However, to get an idea of how many samples are required to
reduce the sampling risk to an level, planning a sample using a Bayesian approach
can still be good practice.

4.1 Required Information
First, planning a minimum sample requires knowledge of the conditions that lead to
acceptance or rejection of the population (i.e., the sampling objectives). Typically,
sampling objectives can be classified into one or both of the following:

• Hypothesis testing: The goal of the sample is to obtain evidence for or against
the claim that the misstatement in the population is lower than a given value
(i.e., the performance materiality).

• Estimation: The goal of the sample is to obtain an accurate estimate of the
misstatement in the population with a certain precision.

Second, it is advised to specify the expected (or tolerable) misstatements in the sample.
The expected misstatements are the misstatements that you allow in the sample,
while still retaining the desired amount of assurance about the population. It is
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strongly recommended to set the value for the expected misstatements in the sample
conservatively to minimize the chance of the observed misstatements in the sample
exceeding the expected misstatements, which would imply that insufficient work has
been done in the end to reduce the sampling risk to an appropriately low level.

Finally, next to determining the sampling objective(s) and the expected misstate-
ments, it is important to determine the statistical distribution linking the sample
outcomes to the population misstatement. This distribution is called the likelihood
(i.e., poisson, binomial, or hypergeometric). All three aforementioned likelihoods
are commonly used in an audit sampling context, however, poisson is the default like-
lihood in jfa because it is the most conservative of the three. In the subsections below,
we elaborate on the three standard likelihoods for audit sampling and demonstrate
how they can be used to obtain a minimum sample size.

In jfa, determining an appropriate sample size is achieved via the planning() func-
tion.

Figure 4.1. When the sampling objectives, the expected misstatements and the
likelihood are set, there exists only one sample size that minimizes the amount of
audit effort. Image available under a CC-BY-NC 4.0 license.

4.2 The Hypergeometric Likelihood
The hypergeometric distribution is a discrete probability distribution that is com-
monly used to model the number of events occurring in a fixed number of trials when
the population size is known. It assumes that samples are drawn from the population
without replacement, and is therefore the likelihood that most closely resembles the
audit practice. For our purpose, we can use the hypergeometric distribution as a
likelihood to model the number of misstatements that are expected to be found in
the sample.

The probability mass function (PMF) of the hypergeometric distribution is given by:
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𝑝(𝑋 = 𝑘) = (𝐾
𝑘 )(𝑁−𝐾

𝑛−𝑘 )
(𝑁

𝑛) , (4.1)

where 𝑘 is the number of misstatements in the sample, 𝑛 is the sample size, 𝑁 is the
population size and 𝐾 is the total number of misstatements assumed in the population.
The assumed misstatements 𝐾 is a whole number, that is, a linear extrapolation of
the maximum tolerable misstatement rate (i.e., the performance materiality) 𝜃𝑚𝑎𝑥 to
the total population of size 𝑁 . In the equation below, ⌈...⌉ is the ceiling function,
which means that ⌈1.2⌉ = 2.

𝐾 = ⌈𝜃𝑚𝑎𝑥𝑁⌉. (4.2)

Let’s consider how to use the hypergeometric likelihood to calculate the minimum
sample size needed to reduce the sampling risk to an appropriately low level.

4.2.1 Classical Planning
In classical planning using the hypergeometric likelihood, the following statistical
model is specified:

𝑘 ∼ Hypergeometric(𝑛, 𝑁, 𝐾) (4.3)

Given the performance materiality 𝜃𝑚𝑎𝑥, we can compute 𝐾 and solve for the mini-
mum sample size 𝑛 needed to reduce the sampling risk to an appropriately low level.
This sample size is also dependent on the number of misstatements that the auditor
expects, or tolerates, in the sample.

4.2.1.1 No Expected Misstatements

If the auditor does not expect any misstatements in the sample, they can set 𝑘 = 0,
which consequently determines how the sample size can be calculated. For example,
if we want to achieve an assurance level of 95 percent (𝛼 = 0.05) for a performance
materiality of 𝜃𝑚𝑎𝑥 = 0.03 in a population of 𝑁 = 1000 items, then 𝐾 = ⌈0.03⋅1000⌉ =
30 and the minimum sample size under the assumption of no expected misstatements
in the sample is 𝑛 = 94.
plan <- planning(materiality = 0.03, expected = 0, conf.level = 0.95,

likelihood = "hypergeometric", N.units = 1000)↪

plan
#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 94
#> sample size obtained in 95 iterations via method 'hypergeometric'

The sample size of 94 can be confirmed by checking that 94 is the minimum integer
that results in less than five percent probability of finding no misstatements, given
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the assumption that the population misstatement is truly 0.03, or three percent. The
dhyper() function calculates the probability of observing 𝑘 missatements in a sam-
ple of 𝑛 items given the assumed hypergeometric distribution with 𝑁 items and 𝐾
assumed misstatements in the population. By calculating this probability for 𝑛 = 93,
we can show that this sample size is insufficient as the relevant probability is higher
than the sampling risk 𝛼.
K <- ceiling(0.03 * 1000)
dhyper(x = 0, m = K, n = 1000 - K, k = 93) < 0.05
#> [1] FALSE

However, for 𝑛 = 94 the relevant probability is lower than the sampling risk 𝛼 and
thus the sample size is considered to be sufficient.
dhyper(x = 0, m = K, n = 1000 - K, k = 94) < 0.05
#> [1] TRUE

We can make this sample size visually intuitive by showing the hypergeometric(𝑘 | 94,
1000, 30) distribution and highlighting the probability for 𝑘 = 0, see Figure 4.2. This
probability is lower than the required sampling risk 𝛼 = 0.05.
plot(plan)
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Figure 4.2. The hypergeometric(𝑘 | 94, 1000, 30) distribution showing the probabil-
ity for 𝑘 = 0 misstatements as a red bar.

The planning() function has two additional arguments that are not shown in the
call above: by and max. The argument by sets the increment between possible sample
sizes for consideration. For example, by = 10 considers only samples of size 10, 20,
30, and so forth.
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planning(materiality = 0.03, likelihood = "hypergeometric", N.units =
1000, by = 10)↪

#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 100
#> sample size obtained in 11 iterations via method 'hypergeometric'

The argument max sets the sample size at which the algorithm terminates. This
can be used to avoid too many iterations of the algorithm at very low values of the
performance materiality. For instance, max = 50 throws an error if more than 100
samples are required.
planning(materiality = 0.03, likelihood = "hypergeometric", N.units =

1000, max = 50)↪

#> Error in planning(materiality = 0.03, likelihood =
"hypergeometric", N.units = 1000, : the sample size is larger than
'max'

↪

↪

4.2.1.2 Expected Misstatements

If the auditor expects misstatements in the sample, they can set 𝑘 to any integer
value, which consequently determines how the sample size can be calculated. As
another example, if we want to achieve an assurance level of 95 percent (𝛼 = 0.05) for
a performance materiality of 𝜃𝑚𝑎𝑥 = 0.03 in a population of 𝑁 = 1000 items, then
the required sample size under the assumption of one expected misstatement in the
sample is 𝑛 = 147.
plan <- planning(materiality = 0.03, expected = 1, likelihood =

"hypergeometric", N.units = 1000)↪

plan
#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 147
#> sample size obtained in 146 iterations via method 'hypergeometric'

Once again, the sample size of 147 can be confirmed by checking that 147 is the
minimum integer that results in less than five percent probability of finding 0 or 1
misstatements, given the assumption that that the population misstatement is truly
three percent. By calculating this probability for 𝑛 = 146, we can show that this
sample size is insufficient as the relevant probability is higher than the sampling risk
𝛼.
sum(dhyper(x = 0:1, m = K, n = 1000 - K, k = 146)) < 0.05
#> [1] FALSE

However, for 𝑛 = 147 the relevant probability is lower than the sampling risk 𝛼 and
thus the sample size is considered to be sufficient.
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sum(dhyper(x = 0:1, m = K, n = 1000 - K, k = 147)) < 0.05
#> [1] TRUE

Like before, we can make this sample size visually intuitive by showing the
hypergeometric(𝑘 | 147, 1000, 30) distribution and highlighting the probabilities for
𝑘 = 0 and 𝑘 = 1, see Figure 4.3. The sum of these probabilities is lower than the
required sampling risk 𝛼 = 0.05.
plot(plan)
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Figure 4.3. The hypergeometric(𝑘 | 147, 1000, 30) distribution showing the proba-
bility for 𝑘 = 0 and 𝑘 = 1 misstatements as a red bar.

4.2.2 Bayesian Planning
Performing Bayesian planning with the hypergeometric likelihood (Dyer & Pierce,
1993) requires that you specify a prior distribution for the total misstatements 𝐾.
Practically, this means that you should provide an input for the prior argument in
the planning() function.

Setting prior = TRUE performs Bayesian planning using a default prior conjugate
to the specified likelihood (i.e., a beta-binomial prior). Because this is a Bayesian
analysis, the following statistical model is specified:

𝑘 ∼ Hypergeometric(𝑛, 𝑁, 𝐾) (4.4)
𝐾 ∼ Beta-binomial(𝑁, 𝛼, 𝛽) (4.5)

The beta-binomial prior distribution is the conjugate prior for to the hypergeometric
likelihood (see this list of conjugate priors), which means that the posterior distribu-
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tion of 𝐾 can be determined analytically. For example, if the prior distribution for
𝐾 is:

𝐾 ∼ Beta-binomial(𝑁, 𝛼, 𝛽) 𝐾 = 0, … , 𝑁 (4.6)

and the auditor has observed a sample of 𝑛 items containing 𝑘 misstatements, then
the posterior distribution for 𝐾 is:

𝐾 ∼ Beta-binomial(𝑁 − 𝑛, 𝛼 + 𝑘, 𝛽 + 𝑘 − 𝑛) 𝐾 = 𝑘, 𝑘 + 1, … , 𝑁 − 𝑛 + 𝑘. (4.7)

4.2.2.1 No Expected Misstatements

Planning for no expected misstatements in the sample can be done by setting the
value for the expected argument to zero. If we want to achieve an assurance level of
95 percent (𝛼 = 0.05) for a performance materiality of 𝜃𝑚𝑎𝑥 = 0.1 in a population of
𝑁 = 20 items, then the required sample size under the assumption of zero expected
misstatements in the sample is 𝑛 = 15. The command below uses a default beta-
binomial(𝑁 , 1, 1) prior distribution to plan this sample, since planning() is given
the hypergeometric likelihood.
plan <- planning(materiality = 0.1, likelihood = "hypergeometric",

N.units = 20, prior = TRUE)↪

The summary() function can be used to obatain relevant information about the plan-
ning.
summary(plan)
#>
#> Bayesian Audit Sample Planning Summary
#>
#> Options:
#> Confidence level: 0.95
#> Population size: 20
#> Materiality: 0.1
#> Hypotheses: H�: 𝜃 > 0.1 vs. H�: 𝜃 < 0.1
#> Expected: 0
#> Likelihood: hypergeometric
#> Prior distribution: beta-binomial(N = 20, 𝛼 = 1, 𝛽 =

1)↪

#>
#> Results:
#> Minimum sample size: 15
#> Tolerable errors: 0
#> Posterior distribution: beta-binomial(N = 5, 𝛼 = 1, 𝛽 =

16)↪

#> Expected most likely error: 0
#> Expected upper bound: 0.05
#> Expected precision: 0.05
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#> Expected BF��: 190

You can inspect how the prior distribution compares to the expected posterior distribu-
tion by using the plot() function, see Figure 4.4. The expected posterior distribution
is the posterior distribution that would occur if you actually observed the planned
sample containing the expected misstatements. Note that the posterior distribution
is only defined in the range [𝑘; 𝑁 − 𝑛 + 𝑘], since a part of the population has already
been seen.
plot(plan)
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Figure 4.4. The beta-binomial prior and posterior distribution on the range [𝑘;
𝑁 − 𝑛 + 𝑘] after seeing no misstatements in the sample.

4.2.2.2 Expected Misstatements

Planning for expected misstatements in the sample can be done by setting the value
for the expected argument to a different value than zero. For example, the code
below calculates the minimum sample size to achieve an assurance level of 95 percent
(𝛼 = 0.05) for a performance materiality of 𝜃𝑚𝑎𝑥 = 0.1 in a population of 𝑁 = 50
items, given one expected misstatement in the sample. This sample size is 𝑛 = 32.
plan <- planning(materiality = 0.1, expected = 1, likelihood =

"hypergeometric", N.units = 50, prior = TRUE)↪

plan
#>
#> Bayesian Audit Sample Planning
#>
#> minimum sample size = 32
#> sample size obtained in 31 iterations via method 'hypergeometric' +

'prior'↪
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Like before, you can inspect how the prior distribution compares to the expected
posterior distribution by using the plot() function, see Figure 4.5 below for the
output of this call.
plot(plan)
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Figure 4.5. The beta-binomial prior and posterior distribution on the range [𝑘;
𝑁 − 𝑛 + 𝑘] after seeing one misstatement in the sample.

4.3 The Binomial Likelihood
The binomial distribution is a discrete probability distribution that is commonly used
to model the number of events occurring in a fixed number of trials. It is similar to
the hypergeometric distribution, however, it assumes that samples are drawn from the
population with replacement. For our purpose, we can use the binomial distribution
as a likelihood to model the number of misstatements that are expected to be found
in the sample.

In audit sampling, the binomial likelihood is often used to approximate the hypergeo-
metric likelihood since it is easier to work with (i.e., it only has two parameters: 𝜃 and
𝑛, while the hypergeometric has three: 𝑛, 𝑁 , and 𝐾). However, the binomial likeli-
hood is more conservative than the hypergeometric likelihood, meaning that resulting
sample sizes will be higher.

The probability mass function (PMF) of the binomial distribution is given by:

𝑝(𝑘; 𝑛, 𝜃) = (𝑛
𝑘)𝜃𝑘(1 − 𝜃)𝑛−𝑘, (4.8)

where 𝑘 is the number of misstatements in the sample, 𝑛 is the sample size and 𝜃 is the
probability of misstatement in the population. Let’s consider how to use the binomial
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likelihood to calculate the minimum sample size needed to reduce the sampling risk
to an appropriately low level.

4.3.1 Classical Planning
In classical planning using the binomial likelihood, the following statistical model is
specified:

𝑘 ∼ Binomial(𝑛, 𝜃𝑚𝑎𝑥) (4.9)

4.3.1.1 No Expected Misstatements

If the auditor does not expect any misstatements in the sample, they can set 𝑘 =
0, which consequently determines how the sample size can be calculated. Given a
performance materiality 𝜃𝑚𝑎𝑥, we can solve for the minimum sample size 𝑛 needed to
reduce the sampling risk to an appropriately low level. A useful trick to utilize is that,
if we do not expect any misstatements in the sample, the formula for the minimum
required sample size reduces to:

𝑛 = ⌈ ln(𝛼)
ln(1 − 𝜃𝑚𝑎𝑥)⌉. (4.10)

For example, if we want to achieve an assurance level of 95 percent (𝛼 = 0.05) for
a performance materiality of 𝜃𝑚𝑎𝑥 = 0.03, then the required sample size under the
assumption of zero expected misstatements in the sample is 𝑛 = 99.
ceiling(log(1 - 0.95) / log(1 - 0.03))
#> [1] 99

In jfa, this sample size can be replicated using the following code:
plan <- planning(materiality = 0.03, likelihood = "binomial")
plan
#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 99
#> sample size obtained in 100 iterations via method 'binomial'

The sample size of 99 can be confirmed by checking that 99 is the minimum integer
that results in less than five percent probability of finding 0 misstatements, given the
assumption that the population misstatement is truly three percent. The dbinom()
function calculates the probability of observing 𝑘 missatements in a sample of 𝑛 items
given an assumed misstatement probability 𝜃𝑚𝑎𝑥. By calculating this probability for
𝑛 = 98, we can show that this sample size is insufficient as the relevant probability is
higher than the sampling risk 𝛼.
dbinom(x = 0, size = 98, prob = 0.03) < 0.05
#> [1] FALSE
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However, for 𝑛 = 99 the relevant probability is lower than the sampling risk 𝛼 and
thus the sample size is considered to be sufficient.
dbinom(x = 0, size = 99, prob = 0.03) < 0.05
#> [1] TRUE

We can make this sample size visually intuitive by showing the binomial(𝑘 | 99, 0.03)
distribution and highlighting the probability for 𝑘 = 0, see Figure 4.6. This probability
is lower than the required sampling risk 𝛼 = 0.05.
plot(plan)
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Figure 4.6. The binomial(𝑘 | 99, 0.03) distribution showing the probability for 𝑘 =
0 misstatement as a red bar.

4.3.1.2 Expected Misstatementss

However, if the number of expected misstatements in the sample is non-zero, it be-
comes more difficult to solve the formula for 𝑛. Hence, they will need to set 𝑘 to a
different integer value, which consequently determines how the sample size is calcu-
lated. Here, we can iteratively try every value of 𝑛 and return the smallest integer
that satisfies the sampling objectives.

In jfa, this can be done by adjusting the expected argument in the planning()
function. For example, if we want to achieve an assurance level of 95 percent (𝛼 =
0.05) for a performance materiality of 𝜃𝑚𝑎𝑥 = 0.03, then the required sample size
under the assumption of one expected misstatement in the sample is 𝑛 = 157.
plan <- planning(materiality = 0.03, expected = 1, likelihood =

"binomial")↪

Once again, the sample size of 157 can be confirmed by checking that 157 is the
minimum integer that results in less than five percent probability of finding 0 or 1
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misstatements, given the assumption that the population misstatement is truly three
percent. By calculating this probability for 𝑛 = 156, we can show that this sample
size is insufficient as the relevant probability is higher than the sampling risk 𝛼.
sum(dbinom(x = 0:1, size = 156, prob = 0.03)) < 0.05
#> [1] FALSE

However, for 𝑛 = 157 the relevant probability is lower than the sampling risk 𝛼 and
thus the sample size is considered to be sufficient.
sum(dbinom(x = 0:1, size = 157, prob = 0.03)) < 0.05
#> [1] TRUE

Like before, we can make this sample size visually intuitive by showing the binomial(𝑘
| 157, 0.03) distribution and highlighting the probabilities for 𝑘 = 0 and 𝑘 = 1, see
Figure 4.7. The sum of these probabilities is lower than the required sampling risk 𝛼
= 0.05.
plot(plan)
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Figure 4.7. The binomial(𝑘 | 157, 0.03) distribution showing the probability for 𝑘
= 0 and 𝑘 = 1 misstatements as a red bar.

4.3.1.3 Expected Misstatement Rate

When the expected misstatement rate in the sample 𝜃𝑒𝑥𝑝 is assessed, the value for 𝑘
can be determined as 𝑘 = 𝑛𝜃𝑒𝑥𝑝, which consequently determines how the sample size
can be calculated.

To account for the fact that 𝑘 can have non-integer values in this case, we can use a
well-known similarity between the binomial distribution and the beta distribution to
plan the sample size. The upper bound for any binomial(𝑘; 𝑛, 𝜃) distributed variable
can also be obtained via percentiles of the beta(1 + 𝑘, 𝑛 − 𝑘) distribution.
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For example, the upper bound for a sample of 𝑛 = 10 items containing 𝑘 = 2 mis-
statements, when calculated via the traditional binom.test() is:
ub_binom <- binom.test(x = 2, n = 10, p = 0.03, conf.level = 0.95,

alternative = "less")$conf.int[2]↪

ub_binom
#> [1] 0.5069013

When calculated via the beta relationship, the upper bound is:
ub_beta <- qbeta(p = 0.95, shape1 = 1 + 2, shape2 = 10 - 2)
ub_beta
#> [1] 0.5069013

It can be validated that the two approaches result in the same upper bound via:
ub_binom == ub_beta
#> [1] TRUE

This relationship between the binomial likelihood and the beta distribution is de-
liberately not used in jfa. That is because, in the case of the binomial distribution,
the auditing standards round the tolerable misstatements upwards to a whole number.
For example, if we try to call the planning() function with the argument expected =
1.5, jfa will internally convert this to expected = 2 and base the sample size on this
in order to stay compliant with American Institute of Certified Public Accountants
(AICPA) (2016a). The resulting sample size is 𝑛 = 208 in this case.
planning(materiality = 0.03, expected = 1.5, likelihood = "binomial")
#> Using 'expected = 2' since 'expected' must be a single integer >= 0
#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 208
#> sample size obtained in 206 iterations via method 'binomial'

4.3.2 Bayesian Planning
Performing Bayesian planning using the binomial likelihood requires that you specify
a prior distribution for the parameter 𝜃. Practically, this means that you should
provide an input for the prior argument in the planning() function.

Setting prior = TRUE performs Bayesian planning using a default prior conjugate to
the specified likelihood (i.e., a beta prior). Because this is a Bayesian analysis, the
following statistical model is specified:

𝑘 ∼ Binomial(𝑛, 𝜃) (4.11)
𝜃 ∼ Beta(𝛼, 𝛽) (4.12)

The beta prior distribution is the conjugate prior for the binomial likelihood (see
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this list of conjugate priors), which means that the posterior distribution of 𝜃 can be
determined analytically. For example, if the prior distribution for 𝜃 is:

𝜃 ∼ Beta(𝛼, 𝛽) 𝜃 ∈ [0, 1] (4.13)

and the auditor has observed a sample of 𝑛 items containing 𝑘 misstatements, then
the posterior distribution for 𝜃 is:

𝜃 ∼ Beta(𝛼 + 𝑘, 𝛽 + 𝑛 − 𝑘) 𝜃 ∈ [0, 1]. (4.14)

For example, the command below uses a default beta(𝛼 = 1, 𝛽 = 1) prior distribution
to plan the sample, since planning() is given the binomial likelihood. If we want to
achieve an assurance level of 95 percent (𝛼 = 0.05) for a performance materiality of
𝜃𝑚𝑎𝑥 = 0.03, then the required sample size under the assumption of zero expected
misstatements in the sample is 𝑛 = 98.
plan <- planning(materiality = 0.03, expected = 0, conf.level = 0.95,

likelihood = "binomial", prior = TRUE)↪

The summary() function can be used to obatain relevant information about the plan-
ning.
summary(plan)
#>
#> Bayesian Audit Sample Planning Summary
#>
#> Options:
#> Confidence level: 0.95
#> Materiality: 0.03
#> Hypotheses: H�: 𝜃 > 0.03 vs. H�: 𝜃 < 0.03
#> Expected: 0
#> Likelihood: binomial
#> Prior distribution: beta(𝛼 = 1, 𝛽 = 1)
#>
#> Results:
#> Minimum sample size: 98
#> Tolerable errors: 0
#> Posterior distribution: beta(𝛼 = 1, 𝛽 = 99)
#> Expected most likely error: 0
#> Expected upper bound: 0.029807
#> Expected precision: 0.029807
#> Expected BF��: 627.22

You can inspect how the prior distribution compares to the expected posterior distribu-
tion by using the plot() function, see Figure 4.8. The expected posterior distribution
is the posterior distribution that would occur if you actually observed the planned
sample containing the expected misstatements.
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plot(plan)
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Figure 4.8. The beta prior and posterior distribution on the range [0; 1] after seeing
no misstatements in the sample of 98 units.

The input for the prior argument can also be an object created by the auditPrior
function. If planning() receives a prior for which there is no conjugate likelihood
available, it will numerically derive the posterior distribution. For example, the com-
mand below uses a Normal(0, 0.05) prior distribution to plan the sample using the
binomial likelihood. Because this is a Bayesian analysis, the following statistical model
is specified:

𝑘 ∼ Binomial(𝑛, 𝜃) (4.15)
𝜃 ∼ Normal(𝜇 = 0, 𝜎 = 0.05) (4.16)

prior <- auditPrior(method = "param", likelihood = "normal", alpha =
0, beta = 0.05)↪

plan <- planning(materiality = 0.03, likelihood = "poisson", prior =
prior)↪

The summary() function can be used to obatain relevant information about the plan-
ning.
summary(plan)
#>
#> Bayesian Audit Sample Planning Summary
#>
#> Options:
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#> Confidence level: 0.95
#> Materiality: 0.03
#> Hypotheses: H�: 𝜃 > 0.03 vs. H�: 𝜃 < 0.03
#> Expected: 0
#> Likelihood: poisson
#> Prior distribution: normal(𝜇 = 0, 𝜎 = 0.05)T[0,1]
#>
#> Results:
#> Minimum sample size: 91
#> Tolerable errors: 0
#> Posterior distribution: Nonparametric
#> Expected most likely error: 0
#> Expected upper bound: 0.029
#> Expected precision: 0.029
#> Expected BF��: 26.749

The resulting sample size under this prior is 𝑛 = 90, a reduction of 8 samples when
compared to the default beta(1, 1) prior distribution. Figure 4.9 shows this prior and
posterior distribution.
plot(plan)
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Figure 4.9. The normal prior distribution in this example contains risk-reducing
information. The posterior distribution has roughly the same upper bound as the
beta posterior in the previous example and occurs after seeing no misstatements in a
sample of 90 units.
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4.4 The Poisson Likelihood
The Poisson distribution is a discrete probability distribution that is commonly used
to model the number of events occurring in a fixed time or space. We can use the
Poisson distribution as a likelihood to model the number of misstatements that are
expected to be found in the sample.

In audit sampling, the Poisson likelihood is often used to approximate the binomial
likelihood since it is easier to work with (i.e., it only has one parameter: 𝜆, while
the binomial has two parameters: 𝜃 and 𝑛). However, the Poisson likelihood is more
conservative than the binomial likelihood, meaning that resulting sample sizes will be
higher.

The probability mass function (PMF) of the Poisson distribution is given by:

𝑝(𝑘; 𝜆) = 𝜆𝑘𝑒−𝜆

𝑘! , (4.17)

where 𝑘 is the number of misstatements in the sample, and 𝜆 is the average number
of misstatements expected in the sample. The average number of misstatements is
related to the misstatement rate in the population, denoted by 𝜃, and the sample size,
𝑛, by the following equation:

𝜆 = 𝑛𝜃. (4.18)

Let’s consider how to use the Poisson likelihood to calculate the minimum sample size
needed to reduce the sampling risk to an appropriately low level.

4.4.1 Classical Planning
In classical planning using the Poisson likelihood, the following statistical model is
specified:

𝑘 ∼ Poisson(𝑛𝜃𝑚𝑎𝑥) (4.19)

4.4.1.1 No Expected Misstatements

Given the performance materiality 𝜃𝑚𝑎𝑥 and the Poisson likelihood, we can solve for
the minimum sample size 𝑛 needed to reduce the sampling risk to an appropriately
low level. A useful trick to utilize is that, if we do not expect any misstatements in
the sample, the formula for the required sample size reduces to:

𝑛 = ⌈− ln(𝛼)
𝜃𝑚𝑎𝑥

⌉. (4.20)

For example, if we want to achieve an assurance level of 95 percent (𝛼 = 0.05) for
a performance materiality of 𝜃𝑚𝑎𝑥 = 0.03, then the required sample size under the
assumption of zero expected misstatements in the sample is 𝑛 = 100.
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ceiling(-log(1 - 0.95) / 0.03)
#> [1] 100

In jfa, this sample size can be replicated using the following code:
plan <- planning(materiality = 0.03, likelihood = "poisson")

The sample size of 100 can be confirmed by checking that 100 is the minimum integer
that results in less than five percent probability of finding no misstatements, given the
assumption that the population misstatement is truly three percent. The dpois()
function calculates the probability of observing 𝑘 missatements in a sample of 𝑛 items
given an assumed misstatement probability 𝜃𝑚𝑎𝑥. By calculating this probability for
𝑛 = 99, we can show that this sample size is insufficient as the relevant probability is
higher than the sampling risk 𝛼.
dpois(x = 0, lambda = 99 * 0.03) < 0.05
#> [1] FALSE

However, for 𝑛 = 100 the relevant probability is lower than the sampling risk 𝛼 and
thus the sample size is considered to be sufficient.
dpois(x = 0, lambda = 100 * 0.03) < 0.05
#> [1] TRUE

We can make this visually intuitive by showing the Poisson(𝑘 | 100 ⋅ 0.03) distribution
and highlighting the probability for 𝑘 = 0, see Figure 4.10. This probability is lower
than the required sampling risk 𝛼 = 0.05.
plot(plan)
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Figure 4.10. The Poisson(𝑘 | 100 ⋅ 0.03) distribution showing the probability for 𝑘
= 0 misstatements as a red bar.
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4.4.1.2 Expected Misstatements

However, if the number of expected misstatements in the sample is non-zero, it be-
comes more difficult to solve the formula for 𝑛 algebraically. Hence, they will need
to set 𝑘 to a different integer value. Next, we can iteratively try every value of 𝑛 and
return the smallest integer that satisfies the sampling objectives.

For example, if we want to achieve an assurance level of 95 percent (𝛼 = 0.05) for
a performance materiality of 𝜃𝑚𝑎𝑥 = 0.03, then the required sample size under the
assumption of one expected misstatement in the sample is 𝑛 = 159.
plan <- planning(materiality = 0.03, expected = 1, likelihood =

"poisson")↪

Once again, the sample size of 159 can be confirmed by checking that 159 is the
minimum integer that results in less than five percent probability of finding 𝑘 = 0
or 𝑘 = 1 misstatements, given the assumption that the population misstatement is
truly three percent. By calculating this probability for 𝑛 = 158, we can show that
this sample size is insufficient as the relevant probability is higher than the sampling
risk 𝛼.
sum(dpois(x = 0:1, lambda = 158 * 0.03)) < 0.05
#> [1] FALSE

However, for 𝑛 = 159 the relevant probability is lower than the sampling risk 𝛼 and
thus the sample size is considered to be sufficient.
sum(dpois(x = 0:1, lambda = 159 * 0.03)) < 0.05
#> [1] TRUE

Like before, we can make this visually intuitive by showing the Poisson(𝑘 | 159 ⋅ 0.03)
distribution and highlighting the probabilities for 𝑘 = 0 and 𝑘 = 1, see Figure 4.11.
The sum of these probabilities is lower than the required sampling risk 𝛼 = 0.05.
plot(plan)
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Figure 4.11. The Poisson(𝑘 | 159 ⋅ 0.03) distribution showing the probability for 𝑘
= 0 and 𝑘 = 1 misstatements as a red bar.

4.4.1.3 Expected Misstatement Rate

When the expected misstatements in the sample 𝜃𝑒𝑥𝑝 is assessed, the value for 𝑘 can
be determined as 𝑘 = 𝑛𝜃𝑒𝑥𝑝, which consequently determines how the sample size can
be calculated.

To account for the fact that 𝑘 can have non-integer values in this case, we use a
well-known similarity between the Poisson distribution and the gamma distribution
to plan the sample size. The upper bound for any Poisson(𝑘; 𝑛𝜃) distributed variable
can also be obtained via percentiles of the gamma(1 + 𝑘, 𝑛) distribution.
For example, the upper bound for a sample of 𝑛 = 10 items containing 𝑘 = 2 mis-
statements, when calculated via the traditional poisson.test() is:
ub_pois <- poisson.test(x = 2, T = 10, r = 0.03, alternative =

"less")$conf.int[2]↪

ub_pois
#> [1] 0.6295794

When calculated via the relationship with the gamma distribution, the upper bound
is:
ub_gamma <- qgamma(p = 0.95, shape = 1 + 2, rate = 10)
ub_gamma
#> [1] 0.6295794

It can be validated that the two approaches result in the same upper bound via:
ub_pois == ub_gamma
#> [1] TRUE
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This relationship between the Poisson likelihood and the gamma distribution is used
under the hood in jfa. For example, if we want to achieve an assurance level of 95
percent (𝛼 = 0.05) for a performance materiality of 𝜃𝑚𝑎𝑥 = 0.03, then the required
sample size under the assumption of 1.5 expected misstatements in the sample is 𝑛
= 185.
planning(materiality = 0.03, expected = 1.5, likelihood = "poisson")
#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 185
#> sample size obtained in 184 iterations via method 'poisson'

The sample size of 185 can be confirmed by checking that 185 is the minimum integer
that results in less than five percent probability of finding a misstatement rate in the
population equal to, or higher than, three percent. By calculating this probability for
𝑛 = 184, we can show that this sample size is insufficient as the relevant upper bound
is higher than the performance materiality 𝜃𝑚𝑎𝑥.
qgamma(p = 0.95, shape = 1 + 1.5, rate = 184) < 0.03
#> [1] FALSE

However, for 𝑛 = 185 the relevant upper bound is lower than the performance mate-
riality 𝜃𝑚𝑎𝑥 and thus the sample size is sufficient.
qgamma(p = 0.95, shape = 1 + 1.5, rate = 185) < 0.03
#> [1] TRUE

4.4.2 Bayesian Planning
Performing Bayesian planning with the Poisson likelihood requires that you specify a
prior distribution for the parameter 𝜃. Practically, this means that you should provide
an input for the prior argument in the planning() function.

Setting prior = TRUE performs Bayesian planning using a default prior conjugate to
the specified likelihood (i.e., a gamma prior). Because this is a Bayesian analysis,
the following statistical model is specified:

𝑘 ∼ Poisson(𝑛𝜃) (4.21)
𝜃 ∼ Gamma(𝛼, 𝛽) (4.22)

The gamma prior distribution is the conjugate prior for the Poisson likelihood (see
this list of conjugate priors), which means that the posterior distribution of 𝜃 can be
determined analytically. For example, if the prior distribution for 𝜃 is:

𝜃 ∼ Gamma(𝛼, 𝛽) 𝜃 ∈ [0, ∞] (4.23)
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and the auditor has observed a sample of 𝑛 items containing 𝑘 misstatements, then
the posterior distribution for 𝜃 is:

𝜃 ∼ Gamma(𝛼 + 𝑘, 𝛽 + 𝑛) 𝜃 ∈ [0, ∞]. (4.24)

For example, the command below uses a default gamma(𝛼 = 1, 𝛽 = 1) prior distribu-
tion to plan the sample, since planning() is given the Poisson likelihood. If we want
to achieve an assurance level of 95 percent (𝛼 = 0.05) for a performance materiality
of 𝜃𝑚𝑎𝑥 = 0.03, then the required sample size under the assumption of zero expected
misstatements in the sample is 𝑛 = 99.
plan <- planning(materiality = 0.03, likelihood = "poisson", prior =

TRUE)↪

The summary() function can be used to obatain relevant information about the plan-
ning.
summary(plan)
#>
#> Bayesian Audit Sample Planning Summary
#>
#> Options:
#> Confidence level: 0.95
#> Materiality: 0.03
#> Hypotheses: H�: 𝜃 > 0.03 vs. H�: 𝜃 < 0.03
#> Expected: 0
#> Likelihood: poisson
#> Prior distribution: gamma(𝛼 = 1, 𝛽 = 1)
#>
#> Results:
#> Minimum sample size: 99
#> Tolerable errors: 0
#> Posterior distribution: gamma(𝛼 = 1, 𝛽 = 100)
#> Expected most likely error: 0
#> Expected upper bound: 0.029957
#> Expected precision: 0.029957
#> Expected BF��: 626.69

You can inspect how the prior distribution compares to the expected posterior dis-
tribution by using the plot() function, see Figure 4.12. The expected posterior
distribution is the posterior distribution that would occur if you actually observed
the planned sample containing the expected misstatements.
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plot(plan)
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Figure 4.12. The gamma prior and posterior distribution on the range [0; ∞] after
seeing no misstatements in the sample of 99 units.

The input for the prior argument can also be an object created by the auditPrior
function. If planning() receives a prior for which there is no conjugate likelihood
available, it will numerically derive the posterior distribution. For example, the com-
mand below uses a Normal(0, 0.05) prior distribution to plan the sample using the
Poisson likelihood. Concretely, this means that the following statistical model is
specified:

𝑘 ∼ Poisson(𝑛𝜃) (4.25)
𝜃 ∼ Normal(𝜇 = 0, 𝜎 = 0.05) (4.26)

prior <- auditPrior(method = "param", likelihood = "normal", alpha =
0, beta = 0.05)↪

plan <- planning(materiality = 0.03, likelihood = "poisson", prior =
prior)↪

The summary() function can be used to obatain relevant information about the plan-
ning.
summary(plan)
#>
#> Bayesian Audit Sample Planning Summary
#>
#> Options:
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#> Confidence level: 0.95
#> Materiality: 0.03
#> Hypotheses: H�: 𝜃 > 0.03 vs. H�: 𝜃 < 0.03
#> Expected: 0
#> Likelihood: poisson
#> Prior distribution: normal(𝜇 = 0, 𝜎 = 0.05)T[0,1]
#>
#> Results:
#> Minimum sample size: 91
#> Tolerable errors: 0
#> Posterior distribution: Nonparametric
#> Expected most likely error: 0
#> Expected upper bound: 0.029
#> Expected precision: 0.029
#> Expected BF��: 26.063

The resulting sample size under this prior is 𝑛 = 91, a reduction of 8 samples when
compared to the default gamma(1, 1) prior. Figure 4.13 shows this prior and posterior
distribution.
plot(plan)
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Figure 4.13. The normal prior distribution in this example contains risk-reducing
information. The posterior distribution has roughly the same upper bound as the one
in the previous example and occurs after seeing no misstatements in the sample of 91
units.
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4.5 Multi-Stage Sampling
A multi-stage sampling plan, as opposed to a single-stage one, allows for an interme-
diate evaluation of the sample. In the first stage of a multi-stage sampling plan, the
auditor selects an initial sample of size 𝑛1. If this sample contains a tolerable number
of misstatements (usually 0), the auditor can approve the population. However, if the
sample contains more misstatements than the tolerable number, the auditor cannot
approve the population. In such a scenario, the initial sample is supplemented with
a second sample of 𝑛2 items. If this additional sample contains a tolerable number
of misstatements, the population can still be approved. If not, the population should
either be rejected or a third sample of 𝑛3 items should be added.

In the classical (i.e., frequentist) methodology, multi-stage sampling plans can be for-
mulated by decomposing the sampling risk into multiple components. For example, if
the auditor initially plans for 𝑘 = 0 misstatements but considers extending the sample
if 𝑘 = 1 misstatement is discovered, then the probability of erroneously rejecting the
hypothesis of material misstatement comprises:

• 𝑝(𝑘 ≤ 0|𝑛1, 𝜃𝑚𝑎𝑥): The probability of finding 𝑘 = 0 misstatements in the first
sample of 𝑛1 items; plus

• 𝑝(𝑘 = 1|𝑛1, 𝜃𝑚𝑎𝑥): The probability of finding 𝑘 = 1 misstatement in the first
sample of 𝑛1 items; multiplied by

• 𝑝(𝑘 ≤ 0|𝑛2, 𝜃𝑚𝑎𝑥): The probability finding 𝑘 = 0 misstatements in the second
sample of 𝑛2 items.

The sum of these probabilities should be less than or equal to the sampling risk 𝛼.

𝑝(𝑘 ≤ 0|𝑛1, 𝜃𝑚𝑎𝑥) + 𝑝(𝑘 = 1|𝑛1, 𝜃𝑚𝑎𝑥) ⋅ 𝑝(𝑘 ≤ 0|𝑛2, 𝜃𝑚𝑎𝑥) ≤ 𝛼 (4.27)

To constrain the problem, jfa sets the number of samples in the extension equal to
the initial sample size (𝑛1 = 𝑛2 = 𝑛𝑠). This implies that the sample size per stage
in this two-stage sampling plan is the smallest integer 𝑛𝑠 that fulfills the following
condition.

𝑝(𝑘 ≤ 0|𝑛𝑠, 𝜃𝑚𝑎𝑥) + 𝑝(𝑘 = 1|𝑛𝑠, 𝜃𝑚𝑎𝑥) ⋅ 𝑝(𝑘 ≤ 0|𝑛𝑠, 𝜃𝑚𝑎𝑥) ≤ 𝛼 (4.28)

In jfa, multi-stage sampling plans can be calculated by supplying an integer vector
of misstatements, after which each stage should be extended, to the planning()
function via its expected argument. For example, the following code calculates the
required sample size if the auditor initially plans for 𝑘 = 0 misstatements but considers
extending the sample if 𝑘 = 1 misstatement is discovered. The required sample size
per stage is 𝑛𝑠 = 103, resulting in a total sample size (if both stages are necessary)
of 𝑛 = 206.
multiplan <- planning(materiality = 0.03, likelihood = "binomial",

expected = c(1, 0))↪

print(multiplan)
#>
#> Classical Audit Sample Planning
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#>
#> minimum sample size = 206 (103 per stage)
#> sample size obtained in 102 iterations via method 'binomial' +

'sequential'↪

To confirm this calculation, we need to ensure that that the probability of incorrectly
rejecting the null hypothesis of material misstatement, under the binomial distribu-
tion, is less than the sampling risk 𝛼 = 0.05.
p_k0_n1 <- pbinom(q = 0, size = 103, prob = 0.03)
p_k1_n1 <- dbinom(x = 1, size = 103, prob = 0.03)
p_k0_n2 <- pbinom(q = 0, size = 103, prob = 0.03)
p_k0_n1 + p_k1_n1 * p_k0_n2 < 0.05
#> [1] TRUE

The minimum sample size per stage, 𝑛2 = 103, is only slighly larger than the minimum
sample size for the first stage if the auditor opts for a single-stage sampling plan
expecting 𝑘 = 0, which is 𝑛 = 99.
planning(materiality = 0.03, likelihood = "binomial", expected = 0)
#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 99
#> sample size obtained in 100 iterations via method 'binomial'

However, the total sample size, 𝑛 = 206, is considerably larger than the minimum
sample size if the auditor opts for a single-stage sampling plan expecting 𝑘 = 1, which
is 𝑛 = 157. This illustrates the cost of allowing a sample size extension in the classical
approach.
planning(materiality = 0.03, likelihood = "binomial", expected = 1)
#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 157
#> sample size obtained in 156 iterations via method 'binomial'

Note that the sample size per stage 𝑛𝑠 = 103 is determined based on 𝑛𝑠 = 𝑛1 =
𝑛2. However, it is important to note that this equality is not mandatory. If the
auditor opts for an initial sample size larger than 𝑛𝑠, they can decrease the size of
the follow-up sample. To illustrate this tradeoff, you can use the plot() function, see
Figure 4.14. The figure includes textual information specifying the total sample size
under the equality constrained multi-stage sampling plan (red) and under multiple
choices for the initial sample size 𝑛1.
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plot(multiplan)
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Figure 4.14. The preferred initial sample size 𝑛1 versus the required follow-up
sample size 𝑛2.

As another example, consider a three-stage sampling plan where the auditor plans to
extend the sample after finding 𝑘 = 1 misstatement in the first stage, extend further
if they find 𝑘 = 1 misstatement in the second stage, and still be able to approve the
population if they find 𝑘 = 0 misstatements in the third stage. The required sample
size in each of the three stages is 𝑛𝑠 = 208.
planning(materiality = 0.03, likelihood = "binomial", expected = c(3,

1, 0))↪

#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 624 (208 per stage)
#> sample size obtained in 204 iterations via method 'binomial' +

'sequential'↪

This can be confirmed by ensuring that the probability of incorrectly rejecting the
null hypothesis of the population containing three percent misstatement is below the
acceptable sampling risk 𝛼 = 0.05.
p_k2_n1 <- pbinom(q = 2, size = 208, prob = 0.03)
p_k3_n1 <- dbinom(x = 3, size = 208, prob = 0.03)
p_k0_n2 <- pbinom(q = 0, size = 208, prob = 0.03)
p_k1_n2 <- dbinom(x = 1, size = 208, prob = 0.03)
p_k0_n3 <- pbinom(q = 0, size = 208, prob = 0.03)
p_k2_n1 + p_k3_n1 * p_k0_n2 + p_k3_n1 * p_k1_n2 * p_k0_n3 < 0.05
#> [1] TRUE
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Unlike the previous example, the minimum sample size per stage, 𝑛𝑠 = 208, is not
larger than the minimum sample size for the first stage if the auditor decides to use
a single-stage sampling plan expecting 𝑘 = 2 misstatements, which is also 𝑛 = 208.
planning(materiality = 0.03, likelihood = "binomial", expected = 2)
#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 208
#> sample size obtained in 206 iterations via method 'binomial'

The Bayesian approach to audit sampling uses the posterior distribution from the
observed sample as a prior distribution for a potential second sample in an iterative
manner. For this reason, this approach does not affect the sampling risk based on
the number of tests (Rouder, 2014). Hence, in the Bayesian framework, it is entirely
appropriate to start sampling until there is enough evidence to make a decision (Ed-
wards et al., 1963). This means that if you find 𝑘 = 1 misstatement in the initial
𝑛1 = 99 samples, calculating the sample size extension simply involves computing
the single-stage sample size under the expectation of 𝑘 = 1 tolerable misstatement.
The total required sample size then becomes 𝑛 = 157, and the sample size extension
therefore amounts to 𝑛2 = 158 - 99 = 59 items.
planning(materiality = 0.03, expected = 1, prior = TRUE)
#>
#> Bayesian Audit Sample Planning
#>
#> minimum sample size = 158
#> sample size obtained in 157 iterations via method 'poisson' +

'prior'↪

4.6 Prior Distributions
In principle, any distribution that covers the range of 𝜃 can be used as a prior distri-
bution. However, some distributions are more suitable than others. For instance, the
beta-binomial, beta and gamma distributions are all commonly used because they are
so-called conjugate distributions, that is, they stay in the same family when updated
by the data. The jfa package provides the ability to construct a prior distribution
for audit sampling. More specifically, the auditPrior() function is used to specify a
prior distribution that can be used as input for the prior argument in the planning()
(and evaluation()) function. Below is an enumeration of the several ways that a
prior distribution can be constructed using the auditPrior function.

4.6.1 Default Prior
The default prior distributions are created using method = 'default'. There are no
explicit rules for what constitutes a default prior. However, jfa’s default priors satisfy
two criteria. First, they contain relatively little information about the population
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misstatement and, second, they are proper (i.e., they integrate to 1). For completeness,
all default priors in jfa are provided in the following list.

• likelihood = 'poisson': gamma(𝛼 = 1, 𝛽 = 1)
• likelihood = 'binomial': beta(𝛼 = 1, 𝛽 = 1)
• likelihood = 'hypergeometric': beta-binomial(𝑁 , 𝛼 = 1, 𝛽 = 1)
• likelihood = 'normal': normal(𝜇 = 0, 𝜎 = 1000)
• likelihood = 'uniform': uniform(min = 0, max = 1)
• likelihood = 'cauchy': Cauchy(𝑥0 = 0, 𝛾 = 1000)
• likelihood = 't': Student-t(df = 1)
• likelihood = 'chisq': chi-squared(df = 1)
• likelihood = 'exponential': exponential(𝜆 = 1)

For instance, to create a default prior distribution using the binomial likelihood (i.e.,
a beta(1, 1) prior), you can use the following code that creates a prior distribution
and stores it in the prior object. You can then use the summary() function to obtain
relevant information about the prior distribution.
prior <- auditPrior(method = "default", likelihood = "binomial")
summary(prior)
#>
#> Prior Distribution Summary
#>
#> Options:
#> Likelihood: binomial
#> Specifics: default prior
#>
#> Results:
#> Functional form: beta(𝛼 = 1, 𝛽 = 1)
#> Mode: NaN
#> Mean: 0.5
#> Median: 0.5
#> Variance: 0.083333
#> Skewness: 0
#> Information entropy (nat): 0
#> 95 percent upper bound: 0.95
#> Precision: NaN

All prior distributions can be visually inspected via the plot() function, see Fig-
ure 4.15.
plot(prior)
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Figure 4.15. The default beta(1, 1) prior distribution.

Furthermore, the predict() function produces the predictions of the prior distribu-
tion on the data level for a sample of n items. For example, the command below
requests the prediction of the default beta(1, 1) prior for a hypothetical sample of 6
items.
predict(prior, n = 6)
#> x=0 x=1 x=2 x=3 x=4 x=5

x=6↪

#> 0.1428571 0.1428571 0.1428571 0.1428571 0.1428571 0.1428571
0.1428571↪

The predictions of the prior distribution can be visualized using the plot() function,
see Figure 4.16.
plot(predict(prior, n = 10))
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Figure 4.16. The predictions of the beta(1, 1) prior distribution concerming the
possible misstatements in an an intended sample of 𝑛 = 6.

4.6.2 Parametric Prior
You can manually specify the parameters of the prior distribution with method =
'param' and the alpha and beta arguments, which correspond to the first and (option-
ally) second parameter of the prior as described above. For example, the commands
below create a beta(2, 10) prior distribution, a normal(0.025, 0.05) prior distribution
and a Student-t(0.01) prior distribution.
auditPrior(method = "param", likelihood = "binomial", alpha = 2, beta

= 10)↪

#>
#> Prior Distribution for Audit Sampling
#>
#> functional form: beta(𝛼 = 2, 𝛽 = 10)
#> parameters obtained via method 'param'
auditPrior(method = "param", likelihood = "normal", alpha = 0.025,

beta = 0.05)↪

#>
#> Prior Distribution for Audit Sampling
#>
#> functional form: normal(𝜇 = 0.025, 𝜎 = 0.05)T[0,1]
#> parameters obtained via method 'param'
auditPrior(method = "param", likelihood = "t", alpha = 0.01)
#>
#> Prior Distribution for Audit Sampling
#>
#> functional form: Student-t(df = 0.01)T[0,1]
#> parameters obtained via method 'param'
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4.6.3 Improper Prior
You can construct an improper prior distribution with classical properties using
method = 'strict'. The posterior distribution of from this prior yields the same
results as the classical methodology with respect to sample sizes and upper limits,
but is only proper once a single non-misstated unit is present in the sample (Derks
et al., 2022a). For example, the command below creates an improper beta(1, 0)
prior distribution. This method requires the poisson, binomial or hypergeometric
likelihood.
auditPrior(method = "strict", likelihood = "binomial")
#>
#> Prior Distribution for Audit Sampling
#>
#> functional form: beta(𝛼 = 1, 𝛽 = 0)
#> parameters obtained via method 'strict'

4.6.4 Impartial Prior
You can incorporate the assumption that tolerable misstatement is equally likely as
intolerable misstatement (Derks et al., 2022a) using method = 'impartial'. For
example, the command below creates an impartial beta prior distribution for a per-
formance materiality of five percent. This method requires that you specify a value
for the materiality.
auditPrior(method = "impartial", likelihood = "binomial", materiality

= 0.05)↪

#>
#> Prior Distribution for Audit Sampling
#>
#> functional form: beta(𝛼 = 1, 𝛽 = 13.513)
#> parameters obtained via method 'impartial'

4.6.5 Probability of Tolerable Misstatement
You can manually assign prior probabilities to the hypothesis of tolerable misstate-
ment and the hypotheses of intolerable misstatement (Derks, de Swart, van Batenburg,
et al., 2021) with method = 'hyp' in combination with p.hmin. For example, the
command below incorporates the information that the hypothesis of tolerable mis-
statement has a pror probability of 60 percent into a beta distribution. Naturally,
this method requires that you specify a value for the materiality.
auditPrior(method = "hyp", likelihood = "binomial", materiality =

0.05, p.hmin = 0.6)↪

#>
#> Prior Distribution for Audit Sampling
#>
#> functional form: beta(𝛼 = 1, 𝛽 = 17.864)
#> parameters obtained via method 'hyp'
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4.6.6 Audit Risk Model
You can translate risk assessments from the Audit Risk Model (inherent risk and
internal control risk) into a prior distribution (Derks, de Swart, van Batenburg, et
al., 2021) using method = 'arm' in combination with the ir and cr arguments. For
example, the command below incorporates the information that the inherent risk
is equal to 90 percent and internal control risk is equal to 60 percent into a beta
prior distribution. This method requires the poisson, binomial or hypergeometric
likelihood.
auditPrior(method = "arm", likelihood = "binomial", materiality =

0.05, ir = 0.9, cr = 0.6)↪

#>
#> Prior Distribution for Audit Sampling
#>
#> functional form: beta(𝛼 = 1, 𝛽 = 12)
#> parameters obtained via method 'arm'

4.6.7 Bayesian Risk Assessment Model
You can incorporate information about the mode and the upper bound of the prior
distribution using method = 'bram'. For example, the code below incorporates the
information that the mode of the prior distribution is one percent and the upper
bound is 60 percent into a beta prior distribution. This method requires the poisson,
binomial or hypergeometric likelihood.
auditPrior(method = "bram", likelihood = "binomial", materiality =

0.05, expected = 0.01, ub = 0.6)↪

#>
#> Prior Distribution for Audit Sampling
#>
#> functional form: beta(𝛼 = 1.023, 𝛽 = 3.317)
#> parameters obtained via method 'bram'

4.6.8 Earlier Sample
You can incorporate information from an earlier sample into the prior distribution
(Derks, de Swart, van Batenburg, et al., 2021) using method = 'sample' in combi-
nation with x and n. For example, the command below incorporates the information
from an earlier sample of 30 items in which 0 misstatements were found into a beta
prior distribution. This method requires the poisson, binomial or hypergeometric
likelihood.
auditPrior(method = "sample", likelihood = "binomial", x = 0, n = 30)
#>
#> Prior Distribution for Audit Sampling
#>
#> functional form: beta(𝛼 = 1, 𝛽 = 30)
#> parameters obtained via method 'sample'
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4.6.9 Weighted Earlier Sample
You can incorporate information from last years results, weighted by a factor (Derks,
de Swart, van Batenburg, et al., 2021), into the prior distribution using method =
'factor' in combination with x and n. For example, the command below incor-
porates the information from a last years results (a sample of 58 items in which 0
misstatements were found), weighted by a factor 0.7, into a beta prior distribution.
This method requires the poisson, binomial or hypergeometric likelihood.
auditPrior(method = "power", likelihood = "binomial", x = 0, n = 58,

delta = 0.7)↪

#>
#> Prior Distribution for Audit Sampling
#>
#> functional form: beta(𝛼 = 1, 𝛽 = 40.6)
#> parameters obtained via method 'power'

4.6.10 Nonparametric Prior
You can base the prior on samples of the prior distribution using method =
'nonparam' in combination with samples. For example, the command below creates
a prior on 1000 samples of a beta(1, 10) distribution. The likelihood argument is
not required and will be ignored in this method.
auditPrior(method = "nonparam", samples = stats::rbeta(1000, 1, 10))
#>
#> Prior Distribution for Audit Sampling
#>
#> functional form: Nonparametric
#> parameters obtained via method 'nonparam'

4.7 Practical Examples
This section contains practical examples of how to conduct the planning of statistical
audit samples and demonstrates how to set up a prior distribution based on various
types of relevant audit information.

4.7.1 Audit Risk Model
In our first example, an auditor is performing tests of details on a population of
the auditee. For instance, let’s say an auditor is performing an audit on a company’s
accounts payable transactions. The company has a total of 𝑁 = 1000 accounts payable
transactions for the year. Rather than testing all 1000 transactions, the auditor can
choose to test a sample of the transactions. The performance materiality for the
payable transactions account is set to 𝜃𝑚𝑎𝑥 = 0.03 (3 percent), and the audit risk is
set to 𝛼 = 0.05, or 5 percent. Based on the results of last years audit, where the most
likely estimate of the misstatement was one percent, the auditor wants to tolerate
one percent misstatements in the sample before giving an unqualified opinion on the
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population.
ar <- 0.05 # Audit risk
materiality <- 0.03 # Performance materiality
expected <- 0.01 # Tolerable deviation rate

Before tests of details, the auditor has assessed risk of material misstatement via the
audit risk model. In this example, the auditor has assessed the effectiveness of the
company’s internal controls, such as its segregation of duties and its risk management
processes, and has determined that they are sufficient to prevent or detect material
misstatements. Because the internal control systems were effective, the auditor as-
sesses the control risk as medium. The auditor’s firm defines the risk categories low,
medium, and high respectively as 50 percent, 60 percent, and 100 percent. According
to the Audit Risk Model, the detection risk can be calculated as a function of the
audit risk, the inherent risk and the control risk.
ir <- 1 # Inherent risk
cr <- 0.6 # Control risk
dr <- ar / (ir * cr) # Detection risk
dr
#> [1] 0.08333333

By using the detection risk of 8.33 percent as the sampling risk for this population, the
auditor can plan for a sample while taking into account the risk-reducing information.
The required minimum sample size is 174 in this case.
planning(materiality = 0.03, expected = expected, conf.level = 1 - dr)
#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 174
#> sample size obtained in 175 iterations via method 'poisson'

The example above is a frequentist one. However, the auditor is free to apply a
Bayesian philosophy in planning the sample. For example, the risk assessments from
the ARM can be incorporated into a prior distribution. This can be done using method
= "arm" in the auditPrior() function, which takes the values of the inherent risk
probability ir and the control risk probability cr. Hence, the prior distribution in
this example can be constructed using the following command:
prior <- auditPrior(method = "arm", materiality = 0.03, expected =

expected, ir = ir, cr = cr)↪

The summary() function can be used to obtain relevant information about the prior
distribution.
summary(prior)
#>
#> Prior Distribution Summary
#>
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#> Options:
#> Likelihood: poisson
#> Specifics: ir = 1; cr = 0.6; dr = 0.0833333
#>
#> Results:
#> Functional form: gamma(𝛼 = 1.46, 𝛽 = 46)
#> Mode: 0.01
#> Mean: 0.031739
#> Median: 0.024859
#> Variance: 0.00069
#> Skewness: 1.6552
#> Information entropy (nat): -2.4894
#> 95 percent upper bound: 0.08343
#> Precision: 0.07343

Furthermore, the prior distribution can be visualized with a call to the plot() func-
tion, see Figure 4.17.
plot(prior)
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Figure 4.17. The prior distribution constructed on the basis of the assessments of
inherent risk and control risk.

By using the prior distribution to incorporate the assessments of the inherent risk
and the control risk, the auditor can plan a sample while taking into account the
risk-reducing information. The required minimum sample size is also 174 in this case.
planning(materiality = 0.03, expected = expected, conf.level = 1 - ar,

prior = prior)↪

#>
#> Bayesian Audit Sample Planning
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#>
#> minimum sample size = 174
#> sample size obtained in 175 iterations via method 'poisson' +

'prior'↪

4.7.2 Benchmark Analysis
The auditor may incorporate information obtained through analytical procedures
(Derks, de Swart, van Batenburg, et al., 2021), such as a benchmark analysis, into the
prior distribution for 𝜃. While we have previously discussed methods for constructing
a prior distribution based on existing knowledge, there is no set procedure for incor-
porating information obtained through analytical procedures, as these procedures can
vary significantly depending on the type of information being incorporated into the
prior distribution. Therefore, it is important to thoroughly substantiate the data and
assumptions used in this approach and to carefully consider how these assumptions
are incorporated into the prior distribution.

One way to construct a prior distribution on the basis of data is through the use of
regression models, such as benchmarking the relationship between sales and costs of
sales within the auditee’s specific industry sector. The jfa package includes a data
set benchmark that can be used for this example.
data(benchmark)
head(benchmark)
#> sales costofsales
#> 1 186273256 140755372
#> 2 336491541 248675452
#> 3 222693077 164299866
#> 4 364905221 285768790
#> 5 382140185 280187371
#> 6 113666950 101552955

The auditee’s the sum of the sales is $298,112,312 and the sum of the booked costs
of sales is $223,994,405, respectively. This is indicated by a blue dot in Figure 4.18
below, which visualizes the industry sales versus the cost of sales.
C_real <- 223994405

The relationship between the sales 𝑆 and the cost of sales 𝐶 can be modelled by a
linear equation:

𝐶 = 𝛽0 + 𝛽1 ⋅ 𝑆 + 𝜖. (4.29)

In practice, this relationship is often more complex than is presented above, and the
auditor must carefully construct and evaluate the applied regression model. However,
for ease of understanding we will continue our example with this toy model. The
auditor can estimate the regression model using the following command:

77



4 | Planning

$ 50M

$100M

$150M

$200M

$250M

$300M

$350M

$400M

$ 50M $100M $150M $200M $250M $300M $350M $400M
Sales

C
os

t o
f s

al
es

Figure 4.18. Scatter plot of the industry sales versus the cost of sales.

fit <- lm(costofsales ~ 1 + sales, data = benchmark)
summary(fit)
#>
#> Call:
#> lm(formula = costofsales ~ 1 + sales, data = benchmark)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -25736696 -7052141 -226945 6857840 25498106
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 2.413e+05 3.455e+06 0.07 0.944
#> sales 7.366e-01 1.310e-02 56.21 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 11150000 on 98 degrees of freedom
#> Multiple R-squared: 0.9699, Adjusted R-squared: 0.9696
#> F-statistic: 3160 on 1 and 98 DF, p-value: < 2.2e-16

The predicted cost of sales for the auditee, based on the industry benchmark, can be
computed as follows:
C_pred <- predict(fit, newdata = data.frame(sales = 298112312),

interval = "prediction", level = 0.90)[1]↪

C_pred
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#> [1] 219817866

The fitted regression line and the predicted cost of sales (red dot) are visualized in
Figure 4.19 below.
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Figure 4.19. Scatter plot of the industry sales versus the cost of sales including the
regression line and the auditee’s (predicted) cost of sales.

The prior distribution can be justified by the data and the auditee’s numerical pre-
diction of the cost of sales. In this analytical procedure, the prior distribution on
𝜃 can utilize the relative error distribution from the linear regression. This relative
error distribution, which is a Normal(𝜇, 𝜎) distribution, captures the uncertainty of
the prediction of the cost of sales through the use of linear regression, scaled to be a
percentage of the total cost of sales. The mean 𝜇 of the prior distribution is deter-
mined by the relative deviation of the auditee’s booked cost of sales when compared
to the predicted cost of sales according to the benchmark data 𝐶− ̂𝐶

𝐶 .
mu <- (C_real - C_pred) / C_real
mu
#> [1] 0.01864573

The standard deviation of the prior distribution is expressed through the standard
deviation of the distribution of 𝜖:
stdev <- sd(fit$residuals) / C_real
stdev
#> [1] 0.04951199

The Normal(0.019, 0.05) prior distribution can be constructed through a call to
auditPrior(), where the likelihood of the prior is specified as normal. We call
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the function with method = "param" to manually specify the parameters of the prior
distribution.
prior <- auditPrior(method = "param", likelihood = "normal", alpha =

mu, beta = stdev)↪

summary(prior)
#>
#> Prior Distribution Summary
#>
#> Options:
#> Likelihood: normal
#> Specifics: 𝛼 = 0.0186457; 𝛽 = 0.049512
#>
#> Results:
#> Functional form: normal(𝜇 = 0.019, 𝜎 = 0.05)T[0,1]
#> Mode: 0.018646
#> Mean: 0.047096
#> Median: 0.041335
#> Variance: 0.0011116
#> Skewness: NA
#> Information entropy (nat): -2.1306
#> 95 percent upper bound: 0.11012
#> Precision: 0.091473

The specified prior distribution can be visualized using the plot() function, see Fig-
ure 4.20.
plot(prior)
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Figure 4.20. The prior distribution constructed on the basis of the benchmark
analysis.
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The performance materiality for this example is set to 𝜃𝑚𝑎𝑥 = 0.05, or five percent,
and the audit risk is set to 𝛼 = 0.05, or five percent. By using this prior distribution,
the required minimum sample size is 𝑛 = 50.
plan <- planning(materiality = 0.05, likelihood = "binomial", prior =

prior)↪

plan
#>
#> Bayesian Audit Sample Planning
#>
#> minimum sample size = 50
#> sample size obtained in 51 iterations via method 'binomial' +

'prior'↪

You can inspect how the prior distribution compares to the expected posterior distri-
bution by using the plot() function, see Figure 4.21.
plot(plan)
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Figure 4.21. The prior and expected posterior distribution for this example after
seeing a sample of 𝑛 = 50 containing no misstatements.

By using a frequentist approach, the required minimum sample size is 𝑛 = 59. Thus,
by performing the analytical procedure and incorporating this information into the
prior distribution, the auditor has achieved a reduction in sample size of 9 items.
plan <- planning(materiality = 0.05, likelihood = "binomial")
plan
#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 59
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#> sample size obtained in 60 iterations via method 'binomial'

4.7.3 Predictive Modeling
As a final example, we consider an example wehre the auditor incorporates information
about the probability of misstatement obtained through a predictive analysis into the
prior distribution for 𝜃. In this example, the auditor is conducting an audit on a long-
term client that they have been working with for fifteen years. Hence, the auditor has
access to a historycal data set called history, which contains the samples from all
of the previous audits that have been conducted on this auditee over the past fifteen
years.
history <-

read.csv("https://github.com/koenderks/sasr/raw/master/data/ch3_history.csv",
colClasses = c("factor", "numeric", "numeric"))

↪

↪

head(history)
#> k ftes days
#> 1 0 2.09 1.83
#> 2 0 17.51 5.02
#> 3 0 17.29 8.47
#> 4 0 23.88 8.31
#> 5 0 15.31 8.25
#> 6 0 18.28 4.47

It should be noted that for all historical sample items, there are three known char-
acteristics: whether they contained a misstatement (designated as k), the number of
full-time equivalent employees (FTEs) who had access to that item within the inter-
nal computer systems of the auditee (designated as ftes), and the number of days
that the item was outstanding (designated as days). Additionally, the ftes and days
characteristics are also known for all items in the current year’s population. Of course,
it is unknown if any misstatements exist within the population of the current year.
population <-

read.csv("https://github.com/koenderks/sasr/raw/master/data/ch3_population.csv")↪

head(population)
#> ID bookValue ftes days
#> 1 82884 242.61 14 4
#> 2 25064 642.99 11 4
#> 3 81235 628.53 8 3
#> 4 71769 431.87 11 3
#> 5 55080 620.88 12 3
#> 6 93224 501.76 12 5

The objective of this analytical procedure is to forecast potential misstatements within
the population of the current year. In order for the information obtained through this
procedure to serve as prior knowledge in a Bayesian analysis, the procedure must yield
a distribution of the probability of misstatement. Therefore, the auditor employs a
machine learning technique known as Random Forest (Hastie et al., 2009) to learn
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the relationship between misstatements, the number of full-time equivalent employees,
and the number of outstanding days in the historical data set.
set.seed(1)
fit <- randomForest::randomForest(formula = k ~ ftes + days, data =

history)↪

The auditor specifically uses the random forest technique due to its ability to provide
a distribution of the misstatement probabilities. The probabilistic predictions for
the unseen misstatements in the population data can be obtained by calling the
predict() function with the argument type = "prob".
predictions <- predict(object = fit, newdata = population, type =

"prob")↪

These predictions come in a probabilistic format, which means that for each item in
the population of the current year there is a predicted probability that that item is
misstated. These probabilities are stored in the second column of the predictions
data frame.
head(predictions)
#> 0 1
#> 1 0.974 0.026
#> 2 0.966 0.034
#> 3 0.992 0.008
#> 4 0.928 0.072
#> 5 0.776 0.224
#> 6 0.982 0.018

The prior distribution for 𝜃 will be based on the distribution of probabilities that
each item in the population is misstated. In contrast to the previous example, this
distribution is not a parametric distribution, which means we are unable to utilize any
parametric priors from jfa. However, by providing samples of the prior distribution,
jfa is able to construct a nonparametric prior distribution internally via the density
of the samples.

The nonparametric prior distribution can be constructed through a call to
auditPrior(), where the method to construct of the prior is specified as nonparam.
The samples of the prior distribution can be provided through the samples argument.
We use the second column of the the predictions object for this.
prior <- auditPrior(method = "nonparam", samples = predictions[, 2])

The nonparametric prior distribution can be visualized using the plot() function, see
Figure 4.22.
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Figure 4.22. The prior distribution constructed on the basis of the predictive model.

The performance materiality for this example is set to 𝜃𝑚𝑎𝑥 = 0.01, or one percent,
and the audit risk is set to 𝛼 = 0.05, or five percent. The minimum sample size can
be calculated with the command below and is 𝑛 = 108.
plan <- planning(materiality = 0.01, likelihood = "binomial", prior =

prior)↪

plan
#>
#> Bayesian Audit Sample Planning
#>
#> minimum sample size = 108
#> sample size obtained in 109 iterations via method 'binomial' +

'prior'↪

You can inspect how the prior distribution compares to the expected posterior distri-
bution by using the plot() function, see Figure 4.23.
plot(plan)
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Figure 4.23. The prior and expected posterior distribution for this example after
seeing a sample of 𝑛 = 108 units containing no misstatements.

By using a frequentist approach, the required minimum sample size is 𝑛 = 299. Thus,
by performing the analytical procedure and incorporating this information into the
prior distribution, the auditor has achieved a reduction in sample size of 299 - 108 =
191 items.
plan <- planning(materiality = 0.01, likelihood = "binomial")
plan
#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 299
#> sample size obtained in 300 iterations via method 'binomial'

4.8 Practical Exercises
1. Use the classical approach with the hypergeometric likelihood to compute the

minimum required sample size for a population of 𝑁 = 100 when applying a
performance materiality of three percent and a sampling risk of five percent.
Tolerate no misstatements in the sample.

2. Recompute the previous sample size with the Bayesian approach using a default
prior.

3. Use the classical approach with the binomial likelihood to compute the minimum
required sample size for a performance materiality of 4.4 percent and a sampling
risk of five percent. Tolerate one misstatement in the sample.

4. Recompute the previous sample size with the Bayesian approach using a default
prior.
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5. Use the classical approach with the Poisson likelihood to compute the minimum
required sample size for a performance materiality of two percent and a sampling
risk of five percent. Use an expected misstatement rate of 0.5 percent.

6. Recompute the previous sample size with the Bayesian approach using a default
prior.

7. Compute the sampling risk according to the Audit Risk Model for an audit
risk percentage of five percent, an inherent risk percentage of 50 percent and
an internal control risk percentage of 80 percent. Next, use the classical ap-
proach with the binomial likelihood to compute the minimum sample size for a
performance materiality of five percent and the new sampling risk. Tolerate no
misstatements in the sample.

8. Construct a prior distribution on the basis of the information in exercise 7. Use
this prior distribution to recompute the previous sample size with the Bayesian
approach.

9. Construct a prior distribution on the basis of the assumption that tolerable mis-
statement is equally likely as intolerable misstatement before seeing the sample
data. Use the binomial likelihood and assume a performance materiality of 2.5
percent.
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4.9 Answers to the Exercises
1. This sample size can be computed using the planning() function with the

arguments likelihood = "hypergeometric" and N.units = 100.
planning(materiality = 0.03, likelihood = "hypergeometric", N.units =

100)↪

#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 63
#> sample size obtained in 64 iterations via method 'hypergeometric'

2. The previous sample size can be recomputed using a default prior by adding
prior = TRUE to the call.

planning(materiality = 0.03, likelihood = "hypergeometric", N.units =
100, prior = TRUE)↪

#>
#> Bayesian Audit Sample Planning
#>
#> minimum sample size = 63
#> sample size obtained in 64 iterations via method 'hypergeometric' +

'prior'↪

3. This sample size can be computed using the planning() function with the
arguments likelihood = "binomial" and expected = 1.

planning(materiality = 0.044, likelihood = "binomial", expected = 1)
#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 106
#> sample size obtained in 105 iterations via method 'binomial'

4. The previous sample size can be recomputed using a default prior by adding
prior = TRUE to the call.

planning(materiality = 0.044, likelihood = "binomial", expected = 1,
prior = TRUE)↪

#>
#> Bayesian Audit Sample Planning
#>
#> minimum sample size = 105
#> sample size obtained in 104 iterations via method 'binomial' +

'prior'↪

5. This sample size can be computed using the planning() function with the
argument expected = 0.005.
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planning(materiality = 0.02, expected = 0.005)
#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 262
#> sample size obtained in 263 iterations via method 'poisson'

6. The previous sample size can be recomputed using a default prior by adding
prior = TRUE to the call.

planning(materiality = 0.02, expected = 0.005, prior = TRUE)
#>
#> Bayesian Audit Sample Planning
#>
#> minimum sample size = 261
#> sample size obtained in 262 iterations via method 'poisson' +

'prior'↪

7. This sample size can be computed by using an adjusted confidence level via the
conf.level argument.

dr <- 0.05 / (0.5 * 0.8)
planning(materiality = 0.05, conf.level = 1 - dr)
#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 42
#> sample size obtained in 43 iterations via method 'poisson'

8. The information in exercise 7 can be incorporated into the prior distribution by
using the auditPrior() function in combination with method = "arm".

prior <- auditPrior(method = "arm", likelihood = "binomial",
materiality = 0.05, ir = 0.5, cr = 0.8)↪

planning(materiality = 0.05, prior = prior)
#>
#> Bayesian Audit Sample Planning
#>
#> minimum sample size = 41
#> sample size obtained in 42 iterations via method 'binomial' +

'prior'↪

9. This prior distribution can be constructed using the auditPrior() function
in combination with method = "impartial", while providing a value for the
materiality.

auditPrior(method = "impartial", likelihood = "binomial", materiality
= 0.05)↪

#>
#> Prior Distribution for Audit Sampling
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#>
#> functional form: beta(𝛼 = 1, 𝛽 = 13.513)
#> parameters obtained via method 'impartial'

89



4 | Planning

90



Chapter 5

Selection

Auditors must often evaluate balances or populations that include a large quantity of
items. As it is not possible to individually examine all of these items, they must select
a subset, or sample, from the total population to make a statement about a specific
characteristic of the population. Several selection methodologies, which are widely
accepted in the audit context, are available for this purpose. This chapter discusses
the most frequently used sampling methodology for audit sampling and demonstrates
how to select a sample using these methods in R.

5.1 Sampling Units
Selecting a subset from the population requires knowledge of the sampling units; phys-
ical representations of the population that needs to be audited. Generally, the auditor
has to choose between two types of sampling units: individual items in the popula-
tion or individual monetary units in the population. In order to perform statistical
selection, the population must be divided into individual sampling units that can be
assigned a probability to be included in the sample. The total collection of all sam-
pling units which have been assigned a selection probability is called the sampling
frame.

5.1.1 Items
A sampling unit for record (i.e., attributes) sampling is generally a characteristic of
an item in the population. For example, suppose that you inspect a population of
receipts. A possible sampling unit for record sampling can be the date of payment of
the receipt. When a sampling unit (e.g., date of payment) is selected by the sampling
method, the population item that corresponds to the sampled unit is included in the
sample.
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5.1.2 Monetary Units
A sampling unit for monetary unit sampling is different than a sampling unit for record
sampling in that it is an individual monetary unit within an item or transaction, like
an individual dollar. For example, a single sampling unit can be the 10th dollar from
a specific receipt in the population. When a sampling unit (e.g., individual dollar)
is selected by the sampling method, the population item that includes the sampling
unit is included in the sample.

5.2 Sampling Methods
This section discusses four sampling methods that are commonly used in audit sam-
pling. The methods that will be discussed are:

• Random sampling
• Fixed interval sampling
• Cell sampling
• Modified sieve sampling

First, let’s get some notation out of the way. As discussed in Chapter 2, the population
size 𝑁 is defined as the total set of individual sampling units (denoted by 𝑥𝑖).

𝑁 = {𝑥1, 𝑥2, … , 𝑥𝑁}. (5.1)

In statistical sampling, every sampling unit 𝑥𝑖 in the population should receive a selec-
tion probability 𝑝(𝑥𝑖). The purpose of the sampling method is to provide a framework
to assign selection probabilities to each of the sampling units, and subsequently draw
sampling units from the population until a set of size 𝑛 has been created.

To illustrate how the resulting sample differs for various sampling methods, we will
use the BuildIt data set included in the jfa package. These data can be loaded into
R using the code below. For simplicity, we will use a sample size of 𝑛 = 10 for all
examples.
data(BuildIt)
n <- 10

5.2.1 Random Sampling
Random sampling is the most simple and straight-forward selection method. The
random sampling method provides a method that allows every sampling unit in the
population an equal chance of being selected, meaning that every combination of
sampling units has the same probability of being selected as every other combination
of the same number of sampling units. Simply put, the algorithm draws a random
selection of size 𝑛 of the sampling units. Therefore, the selection probability for each
sampling unit is defined as:

𝑝(𝑥) = 1
𝑁 . (5.2)
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To make this procedure visually intuitive, Figure 5.1 below provides an illustration of
the random sampling method.

Figure 5.1. Illustration of random sampling, which involves selecting a subset of
items from a population in such a way that every sampling unit in the population has
an equal chance of being included in the sample.

• Advantage(s): The random sampling method yields an optimal random selec-
tion, with the additional advantage that the sample can be easily extended by
applying the same method again.

• Disadvantages: Because the selection probabilities are equal for all sampling
units there is no guarantee that items with a large monetary value in the pop-
ulation will be included in the sample.

5.2.1.1 Record Sampling

Random sampling can easily be coded in base R. First, we have to get a vector of
of the possible items (rows) in the population that can be selected. When we are
performing record sampling, we can simply use R’s build in sample() function to
draw a random sample from a vector 1:nrow(BuildIt) representing the row indices
of the items and store the result in a variable items.
set.seed(1)
items <- sample.int(nrow(BuildIt), size = n, replace = FALSE)
items
#> [1] 1017 679 2177 930 1533 471 2347 270 1211 3379

You can then select the sample from the population using the selected indices stored
in items.
BuildIt[items, ]
#> ID bookValue auditValue
#> 1017 50755 618.24 618.24
#> 679 20237 669.75 669.75
#> 2177 9517 454.02 454.02
#> 930 85674 257.82 257.82
#> 1533 31051 308.53 308.53
#> 471 84375 824.66 824.66
#> 2347 75616 623.70 623.70
#> 270 82033 352.75 352.75
#> 1211 12877 52.89 52.89
#> 3379 85322 330.24 330.24

The sample can be reproduced in jfa via the selection() function. This function
takes as input the population data, the sample size, and the characteristics of the sam-
pling method. The argument units allows you to specify that you want to use record
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sampling (units = "items"), while the method argument enables you to specify that
you are performing random sampling (method = 'random').
set.seed(1)
selection(BuildIt, size = n, units = "items", method =

"random")$sample↪

#> row times ID bookValue auditValue
#> 1 1017 1 50755 618.24 618.24
#> 2 679 1 20237 669.75 669.75
#> 3 2177 1 9517 454.02 454.02
#> 4 930 1 85674 257.82 257.82
#> 5 1533 1 31051 308.53 308.53
#> 6 471 1 84375 824.66 824.66
#> 7 2347 1 75616 623.70 623.70
#> 8 270 1 82033 352.75 352.75
#> 9 1211 1 12877 52.89 52.89
#> 10 3379 1 85322 330.24 330.24

An alternative to specifying the desired sample size through the size argument is to
provide an object generated by the planning() function to the selection() function.
For instance, the following code utilizes the planning() function to plan a sample
size based on a performance materiality of 0.03, or three percent, and a sampling risk
of 0.05, or five percent, which can be passed directly to selection() to select the
sample from the BuildIt population.
selection(BuildIt, size = planning(materiality = 0.03), units =

"items", method = "random")↪

#>
#> Audit Sample Selection
#>
#> data: BuildIt
#> number of sampling units = 100, number of items = 100
#> sample selected via method 'items' + 'random'

The ability of one function to accept input from another function allows for the
implementation of a workflow in which the planning() function and the selection()
function are sequentially linked. Additionally, the use of R’s native pipe operator |>
further simplifies this process.
planning(materiality = 0.03) |>
selection(data = BuildIt, units = "items", method = "random")

#>
#> Audit Sample Selection
#>
#> data: BuildIt
#> number of sampling units = 100, number of items = 100
#> sample selected via method 'items' + 'random'

The selection() function has three additional arguments which you can use to
preprocess your population before selection. These arguments are order, decreasing
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and randomize.

The order argument takes as input a column name in data which determines the
order of the population. For example, you can order the population from lowest book
value to highest book value before engaging in the selection. In this case, you should
use the decreasing = FALSE (its default value) argument.
set.seed(1)
selection(BuildIt, size = n, order = "bookValue", units = "items",

method = "random")$sample↪

#> row times ID bookValue auditValue
#> 1 29 1 58849 274.26 274.26
#> 2 3297 1 24279 229.95 229.95
#> 3 931 1 28025 429.14 429.14
#> 4 756 1 11563 263.08 105.23
#> 5 3375 1 58981 335.39 335.39
#> 6 1624 1 97783 197.19 197.19
#> 7 2534 1 95715 457.42 457.42
#> 8 1798 1 95520 157.54 157.54
#> 9 3448 1 12959 296.82 296.82
#> 10 450 1 39908 831.31 831.31

The randomize argument can be used to randomly shuffle the items in the popula-
tion before selection. For example, you can randomly shuffle the population before
engaging in the selection using randomize = TRUE.
set.seed(1)
selection(BuildIt, size = n, randomize = TRUE, units = "items", method

= "random")$sample↪

#> row times ID bookValue auditValue
#> 1 1264 1 85424 406.81 406.81
#> 2 923 1 12566 287.61 287.61
#> 3 776 1 92923 247.89 247.89
#> 4 127 1 71325 306.78 306.78
#> 5 1611 1 10019 191.18 191.18
#> 6 3087 1 87887 666.13 666.13
#> 7 1729 1 78779 608.02 608.02
#> 8 2037 1 74155 347.18 347.18
#> 9 2769 1 26010 240.10 240.10
#> 10 2276 1 80154 282.91 282.91

5.2.1.2 Monetary Unit Sampling

When we are performing record sampling, we have to consider that each item in
the population consists of multiple smaller items (i.e., the monetary units), which
means that items with a higher book value should get a higher probability of being
selected. The sample() function faciliates weighted selection via the prob argument,
which takes a vector of values and, using normalization, computes the weights for
selection. The call below is similar to before, but in this case we use the book values
in the column bookValues of the data set to weigh the items and store the result in
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a variable items.
set.seed(1)
items <- sample.int(nrow(BuildIt), size = n, replace = TRUE, prob =

BuildIt[["bookValue"]])↪

items
#> [1] 1017 679 2856 471 270 2642 597 2208 330 1615

You can then select the sample from the population using the selected indices stored
in items.
BuildIt[items, ]
#> ID bookValue auditValue
#> 1017 50755 618.24 618.24
#> 679 20237 669.75 669.75
#> 2856 21836 820.86 820.86
#> 471 84375 824.66 824.66
#> 270 82033 352.75 352.75
#> 2642 49666 601.71 601.71
#> 597 93226 376.55 376.55
#> 2208 61540 963.53 963.53
#> 330 30774 508.26 508.26
#> 1615 42859 598.07 598.07

The sample can be reproduced in jfa via the selection() function. The argument
units allows you to specify that you want to use monetary unit sampling (units =
"values"), while the method argument enables you to specify that you are performing
random sampling (method = 'random'). Note that you should provide the name of
the column in the data that contains the monetary units via the values argument.
set.seed(1)
selection(BuildIt, size = n, units = "values", method = "random",

values = "bookValue")$sample↪

#> row times ID bookValue auditValue
#> 1 1017 1 50755 618.24 618.24
#> 2 679 1 20237 669.75 669.75
#> 3 2856 1 21836 820.86 820.86
#> 4 471 1 84375 824.66 824.66
#> 5 270 1 82033 352.75 352.75
#> 6 2642 1 49666 601.71 601.71
#> 7 597 1 93226 376.55 376.55
#> 8 2208 1 61540 963.53 963.53
#> 9 330 1 30774 508.26 508.26
#> 10 1615 1 42859 598.07 598.07

5.2.2 Fixed Interval Sampling
Fixed interval sampling is a method designed for yielding representative samples from
monetary populations. The algorithm determines a uniform interval on the (optionally
ranked) sampling units. Next, a starting point is handpicked or randomly selected in
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the first interval and a sampling unit is selected throughout the population at each of
the uniform intervals from the starting point. For example, if the interval has a width
of 10 sampling units and sampling unit number 5 is chosen as the starting point, the
sampling units 5, 15, 25, etc. are selected to be included in the sample.

The number of required intervals 𝐼 can be determined by dividing the number of
sampling units in the population by the required sample size:

𝐼 = 𝑁
𝑛 , (5.3)

in which 𝑛 is the required sample size and 𝑁 is the total number of sampling units
in the population.

If the space between the selected sampling units is equal, the selection probability for
each sampling unit is theoretically defined as:

𝑝(𝑥) = 1
𝐼 , (5.4)

with the property that the space between selected units 𝑖 (of which the first one is
the starting point) is the same as the interval 𝐼 , see @#fig-selection-interval below.
However, in practice the selection is deterministic and completely depends on the
chosen starting points (using start).

Figure 5.2. Illustration of fixed interval sampling. The population is represented
by the horizontal line, and the vertical lines indicate the intervals of size I at which
samples units are selected. By using fixed interval sampling, equal spacing between
sampling units is ensures, which means that every ith unit in the population is included
in the sample.

The fixed interval method yields a sample that allows every sampling unit in the
population an equal chance of being selected. However, the fixed interval method has
the property that all items in the population with a monetary value larger than the
interval 𝐼 have an selection probability of one because one of these items’ sampling
units are always selected from the interval. Note that, if the population is arranged
randomly with respect to its deviation pattern, fixed interval sampling is equivalent
to random selection.

• Advantage(s): The advantage of the fixed interval sampling method is that it
is often simple to understand and fast to perform. Another advantage is that, in
monetary unit sampling, all items that are greater than the calculated interval
will be included in the sample. In record sampling, since units can be ranked
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on the basis of value, there is also a guarantee that some large items will be in
the sample.

• Disadvantage(s): A pattern in the population can coincide with the selected
interval, rendering the sample less representative. What is sometimes seen as
an added complication for this method is that the sample is hard to extend
after drawing the initial sample. This is due to the chance of selecting the
same sampling unit. However, by removing the already selected sampling units
from the population and redrawing the intervals this problem can be efficiently
solved.

5.2.2.1 Record Sampling

To code fixed interval sampling in a record sampling context, we first have to compute
the size of the interval we are working with. This is computed by dividing the number
of items in the population by the desired sample size 𝑛. Suppose the auditor wants
to select a sample of 10 items, then the interval is computed by:
interval <- nrow(BuildIt) / n

Next, we have to determine the starting point. We are going to take the fifth unit in
each interval in this case.
start <- 5

To find which rows are part of the sample, we execute the following code:
items <- ceiling(start + interval * 0:(n - 1))

You can then select the sample from the population using the selected indices stored
in items.
BuildIt[items, ]
#> ID bookValue auditValue
#> 5 55080 620.88 620.88
#> 355 27934 749.38 749.38
#> 705 21900 919.00 919.00
#> 1055 66675 384.27 384.27
#> 1405 13472 360.05 360.05
#> 1755 61607 389.75 389.75
#> 2105 68519 354.71 354.71
#> 2455 91983 467.72 467.72
#> 2805 25646 420.80 420.80
#> 3155 94955 248.77 248.77

The sample can be reproduced in jfa via the selection() function. The argument
units allows you to specify that you want to use record sampling (units = "items"),
while the method argument enables you to specify that you are performing fixed
interval sampling (method = 'interval'). Note that, by default, the first sampling
unit from each interval is selected. However, this can be changed by setting the
argument start to a different value.
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selection(BuildIt, size = n, units = "items", method = "interval",
start = start)$sample↪

#> row times ID bookValue auditValue
#> 1 5 1 55080 620.88 620.88
#> 2 355 1 27934 749.38 749.38
#> 3 705 1 21900 919.00 919.00
#> 4 1055 1 66675 384.27 384.27
#> 5 1405 1 13472 360.05 360.05
#> 6 1755 1 61607 389.75 389.75
#> 7 2105 1 68519 354.71 354.71
#> 8 2455 1 91983 467.72 467.72
#> 9 2805 1 25646 420.80 420.80
#> 10 3155 1 94955 248.77 248.77

5.2.2.2 Monetary Unit Sampling

In monetary unit sampling, the only difference is that we are computing the interval
on the basis of the booked values in the column bookValue of the data set. In this
case, the starting point start = 5 determines which monetary unit from each interval
is selected.
interval <- sum(BuildIt[["bookValue"]]) / n

To find which units are part of the sample, we execute the following code:
units <- start + interval * 0:(n - 1)

To obtain which items are part of the sample, we can run the following for loop. Note
that this does not take into account whether the book values contain negative values,
which should not be included in the cumulative sum below.
all_units <- ifelse(BuildIt[["bookValue"]] < 0, 0,

BuildIt[["bookValue"]])↪

all_items <- 1:nrow(BuildIt)
items <- numeric(n)
for (i in 1:n) {
item <- which(units[i] <= cumsum(all_units))[1]
items[i] <- all_items[item]

}

You can then select the sample from the population using the selected indices stored
in items.
BuildIt[items, ]
#> ID bookValue auditValue
#> 1 82884 242.61 242.61
#> 358 20711 610.88 610.88
#> 715 99012 313.75 313.75
#> 1081 65319 502.54 201.02
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#> 1421 88454 856.28 856.28
#> 1774 87258 157.68 157.68
#> 2103 48652 497.21 497.21
#> 2435 37248 1041.44 1041.44
#> 2787 10925 377.10 377.10
#> 3152 71832 1001.82 1001.82

The sample can be reproduced in jfa via the selection() function. The argument
units allows you to specify that you want to use monetary unit sampling (units =
"values"), while the method argument enables you to specify that you are performing
fixed interval sampling (method = 'interval'). Note that you should provide the
name of the column in the data that contains the monetary units via the values
argument.
selection(BuildIt, size = n, units = "values", method = "interval",

values = "bookValue", start = start)$sample↪

#> row times ID bookValue auditValue
#> 1 1 1 82884 242.61 242.61
#> 2 358 1 20711 610.88 610.88
#> 3 715 1 99012 313.75 313.75
#> 4 1081 1 65319 502.54 201.02
#> 5 1421 1 88454 856.28 856.28
#> 6 1774 1 87258 157.68 157.68
#> 7 2103 1 48652 497.21 497.21
#> 8 2435 1 37248 1041.44 1041.44
#> 9 2787 1 10925 377.10 377.10
#> 10 3152 1 71832 1001.82 1001.82

5.2.3 Cell Sampling
The cell sampling method divides the (optionally ranked) population into a set of
intervals 𝐼 that are computed through the previously given equations. Within each
interval, a sampling unit is selected by randomly drawing a number between 1 and
the interval range 𝐼 . This causes the space 𝑖 between the sampling units to vary. The
procedure is displayed in @#fig-selection-cell.

Like in the fixed interval sampling method, the selection probability for each sampling
unit is defined as:

𝑝(𝑥) = 1
𝐼 . (5.5)

The cell sampling method has the property that all items in the population with a
monetary value larger than twice the interval 𝐼 have a selection probability of one.

• Advantage(s): More sets of samples are possible than in fixed interval sam-
pling, as there is no systematic interval 𝑖 to determine the selections. It is
argued that the cell sampling algorithm offers a solution to the pattern problem
in fixed interval sampling.
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Figure 5.3. Illustration of cell sampling. In this illustration, the population is
fist divided into distinct cells of size 𝐼 and subsequently a random sampling unit is
selected within each cell such that the space between units 𝑖 varies.

• Disadvantage(s): A disadvantage of this sampling method is that not all
items in the population with a monetary value larger than the interval have a
selection probability of one. Besides, population items can be in two adjacent
cells, thereby creating the possibility that an items is included in the sample
twice.

5.2.3.1 Record Sampling

To code cell sampling in a record sampling context, we again have to compute the
size of the interval we are working with:
interval <- nrow(BuildIt) / n

Next, we have to randomly determine which items are going to be selected in each
interval.
set.seed(1)
starts <- floor(runif(n, 0, interval))

To find which rows are part of the sample, we execute the following code:
items <- floor(starts + interval * 0:(n - 1))

You can then select the sample from the population using the selected indices stored
in items.
BuildIt[items, ]
#> ID bookValue auditValue
#> 92 75133 355.16 355.16
#> 480 81037 456.27 456.27
#> 900 1730 449.87 449.87
#> 1367 36587 282.32 282.32
#> 1470 10305 648.70 648.70
#> 2064 96344 268.94 268.94
#> 2430 60885 493.77 493.77
#> 2681 60935 312.98 312.98
#> 3020 8716 450.76 450.76
#> 3171 61036 387.67 387.67
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The sample can be reproduced in jfa via the selection() function. The argument
units allows you to specify that you want to use record sampling (units = "items"),
while the method argument enables you to specify that you are performing cell sam-
pling (method = 'cell').
set.seed(1)
selection(BuildIt, size = n, units = "items", method = "cell")$sample
#> row times ID bookValue auditValue
#> 1 92 1 75133 355.16 355.16
#> 2 480 1 81037 456.27 456.27
#> 3 900 1 1730 449.87 449.87
#> 4 1367 1 36587 282.32 282.32
#> 5 1470 1 10305 648.70 648.70
#> 6 2064 1 96344 268.94 268.94
#> 7 2430 1 60885 493.77 493.77
#> 8 2681 1 60935 312.98 312.98
#> 9 3020 1 8716 450.76 450.76
#> 10 3171 1 61036 387.67 387.67

5.2.3.2 Monetary Unit Sampling

In monetary unit sampling, the only difference is that we are computing the interval
on the basis of the booked values in the column bookValue of the data set. In this
case, the starting points start determines which monetary unit from each interval is
selected.
interval <- sum(BuildIt[["bookValue"]]) / n

To obtain which items are part of the sample, we can run the following for loop. Note
that this does not take into account whether the book values contain negative values,
which should not be included in the cumulative sum below.
set.seed(1)
all_units <- ifelse(BuildIt[["bookValue"]] < 0, 0,

BuildIt[["bookValue"]])↪

all_items <- 1:nrow(BuildIt)
intervals <- 0:n * interval
items <- numeric(n)
for (i in 1:n) {
unit <- stats::runif(1, intervals[i], intervals[i + 1])
item <- which(unit <= cumsum(all_units))[1]
items[i] <- all_items[item]

}

You can then select the sample from the population using the selected indices stored
in items.
BuildIt[items, ]
#> ID bookValue auditValue
#> 95 15009 415.60 415.60
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#> 486 79093 635.85 635.85
#> 931 28025 429.14 429.14
#> 1387 56444 296.37 296.37
#> 1492 81443 543.80 543.80
#> 2074 14196 270.45 270.45
#> 2418 87743 347.99 347.99
#> 2660 23927 454.81 454.81
#> 3024 78925 251.44 251.44
#> 3172 18286 450.57 450.57

The sample can be reproduced in jfa via the selection() function. The argument
units allows you to specify that you want to use monetary unit sampling (units =
"values"), while the method argument enables you to specify that you are performing
cell sampling (method = 'cell'). Note that you should provide the name of the
column in the data that contains the monetary units via the values argument.
set.seed(1)
selection(BuildIt, size = n, units = "values", method = "cell", values

= "bookValue")$sample↪

#> row times ID bookValue auditValue
#> 1 95 1 15009 415.60 415.60
#> 2 486 1 79093 635.85 635.85
#> 3 931 1 28025 429.14 429.14
#> 4 1387 1 56444 296.37 296.37
#> 5 1492 1 81443 543.80 543.80
#> 6 2074 1 14196 270.45 270.45
#> 7 2418 1 87743 347.99 347.99
#> 8 2660 1 23927 454.81 454.81
#> 9 3024 1 78925 251.44 251.44
#> 10 3172 1 18286 450.57 450.57

5.2.4 Modified Sieve Sampling
The fourth option for the sampling method is modified sieve sampling (Hoogduin,
Hall, & Tsay, 2010). The algorithm starts by selecting a standard uniform random
number 𝑅𝑖 between 0 and 1 for each item in the population. Next, the sieve ratio:

𝑆𝑖 = 𝑌𝑖
𝑅𝑖

(5.6)

is computed for each item by dividing the book value of that item by the random
number. Lastly, the items in the population are sorted by their sieve ratio 𝑆 (in
decreasing order) and the top 𝑛 items are selected for inspection. In contrast to the
classical sieve sampling method (Rietveld, 1978), the modified sieve sampling method
provides precise control over sample sizes.
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5.2.4.1 Monetary Unit Sampling
set.seed(1)
all_units <- ifelse(BuildIt[["bookValue"]] < 0, 0,

BuildIt[["bookValue"]])↪

all_items <- 1:nrow(BuildIt)
ri <- all_units / stats::runif(length(all_items), 0, 1)
items <- all_items[order(-ri)]
items <- items[1:n]

You can then select the sample from the population using the selected indices stored
in items.
BuildIt[items, ]
#> ID bookValue auditValue
#> 2329 29919 681.10 681.10
#> 2883 59402 279.29 279.29
#> 1949 56012 581.22 581.22
#> 3065 47482 621.73 621.73
#> 1072 79901 789.97 789.97
#> 488 50811 651.35 651.35
#> 1916 53565 266.37 266.37
#> 463 65768 480.89 480.89
#> 1311 91955 398.96 398.96
#> 2895 8688 492.02 492.02

The sample can be reproduced in jfa via the selection() function. The argument
units allows you to specify that you want to use monetary unit sampling (units =
"values"), while the method argument enables you to specify that you are performing
modified sieve sampling (method = 'sieve'). Note that you should provide the name
of the column in the data that contains the monetary units via the values argument.
set.seed(1)
selection(BuildIt, size = n, units = "values", method = "sieve",

values = "bookValue")$sample↪

#> row times ID bookValue auditValue
#> 1 2329 1 29919 681.10 681.10
#> 2 2883 1 59402 279.29 279.29
#> 3 1949 1 56012 581.22 581.22
#> 4 3065 1 47482 621.73 621.73
#> 5 1072 1 79901 789.97 789.97
#> 6 488 1 50811 651.35 651.35
#> 7 1916 1 53565 266.37 266.37
#> 8 463 1 65768 480.89 480.89
#> 9 1311 1 91955 398.96 398.96
#> 10 2895 1 8688 492.02 492.02
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5.3 Practical Exercises
1. Select a random sample of 120 items from the BuildIt data set.

2. Select a sample of 240 monetary units from the BuildIt data set using a fixed
interval selection method. Use a starting point of 12.
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5.4 Answers to the Exercises
1. Selecting a random sample of 120 items can be done using the selection()

function with the additional arguments size = 120, method = "random" and
units = "items".

selec <- selection(data = BuildIt, size = 120, method = "random",
units = "items")↪

head(selec[["sample"]], 5)
#> row times ID bookValue auditValue
#> 1 1827 1 38946 517.88 517.88
#> 2 1372 1 59757 177.25 177.25
#> 3 940 1 9621 429.21 429.21
#> 4 949 1 48821 363.40 363.40
#> 5 2307 1 95785 244.49 244.49

2. Selecting a random sample of 240 monetary units can be done using the
selection() function with the arguments size = 240, method = "interval"
and units = "values". Additionally, for fixed interval monetary unit sam-
pling, the book values must be given in via argument values = "bookValue".
The starting point is indicated using start = 12.

selec <- selection(data = BuildIt, size = 240, method = "interval",
units = "values", values = "bookValue", start = 12)↪

head(selec[["sample"]], 5)
#> row times ID bookValue auditValue
#> 1 1 1 82884 242.61 242.61
#> 2 15 1 76073 469.93 469.93
#> 3 31 1 83557 507.34 507.34
#> 4 47 1 53784 325.19 325.19
#> 5 63 1 51272 248.40 248.40
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Evaluation

In statistical audit sampling, the evaluation of the sample is the crucial last step in
the process. Here, the auditor assesses the audit evidence collected from the sample
and blends it with the evidence gathered in earlier stages of the audit. The outcome
of this evaluation forms the auditor’s overall opinion of the population being audited.

Just as with planning a sample, evaluating a sample requires knowledge of the circum-
stances that determine whether the population should be accepted or rejected, which
are referred to as sampling objectives. Sampling objectives can be divided into two
main categories:

• Hypothesis testing: The goal of the sample is to obtain evidence for or against
the claim that the misstatement in the population is lower than a given value
(i.e., the performance materiality).

• Estimation: The goal of the sample is to obtain an accurate estimate of the
misstatement in the population with a certain precision.

When an auditor needs to perform audit sampling, they typically have two options:
non-stratified or stratified sampling. Non-stratified sampling involves selecting a sam-
ple of units without considering any categorical characteristics, such as product type
or store location, of these items. Stratified sampling involves dividing the popula-
tion into subgroups based on specific characteristics and selecting a sample from each
subgroup. In comparison to non-stratified sampling, stratified sampling can improve
efficiency. However, in this chapter, we will focus on non-stratified audit sampling,
while stratified audit sampling will be covered in the next chapter.

Non-stratified sampling is typically used when the population is considered homoge-
nous, meaning there are no significant differences between subgroups. This approach
is also suitable when the auditor does not need to consider differences between sub-
groups. For example, when an auditor reviews a company’s inventory using non-
stratified sampling, they may choose a random sample of items from the entire in-
ventory without dividing it into subgroups. Similarly, when conducting an audit of
a small business’s general ledger, an auditor may select a sample of entries without
dividing them based on categorical features such as payment method.
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Figure 6.1. When evaluating a sample with respect to a specific hypothesis, the
auditor must consider the evidence in favour as well as the evidence against that
hypothesis. Image available under a CC-BY-NC 4.0 license.

To get started with non-stratified evaluation of audit samples, the auditor must first
decide if they want to evaluate based on summary statistics derived from a sample
(i.e., 1 misstatement in 100 items) or if they want to calculate the misstatements from
a data set. To make the principle of evaluation easier to understand, we will first
explain how to evaluate a sample using summary statistics from a sample. Next, we
will explain how to evaluate a sample using the raw data.

6.1 Binary Misstatements
Complete misstatements arise when there is an absolute discrepancy between the
actual value of an item in the sample and its recorded value. From a data perspective,
this signifies that the misstatements in the sample are strictly binary (i.e., 0 or 1)
and do not encompass values within the intermediary range of 0 to 1. For example, a
receipt for goods received can be fully misstated if the goods have not been received
at all.

6.1.1 Classical Evaluation
In classical evaluation, confidence intervals and p-values are used to measure the
uncertainty and the evidence against the hypothesis of intolerable misstatement, re-
spectively.

Confidence intervals play a crucial role in classical inference by helping to determine
the uncertainty in a sample estimate. For example, if an auditor needs to estimate
the misstatement in a tax return, they can calculate a confidence interval for the
misstatement using classical inference. This confidence interval represents a range of
possible values in which the true misstatement of the population is likely to fall. This
range helps auditors make informed decisions about the misstatement and determine
the potential impact of the misstatement on the (loss of) taxes.
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To illustrate, suppose an auditor wants to estimate the misstatement in a population
based on a sample of 100 items containing one misstatement. Using the evaluation()
function in jfa and specifying x = 1 and n = 100, the output shows that the esti-
mated most likely misstatement in the population is one percent, and the 95 percent
(one-sided) confidence interval ranges from 0 percent to 4.74 percent. It is important
to note that the correct interpretation of a 95 percent confidence interval is: “If we
were to repeat the experiment over and over, then 95 percent of the time the confidence
interval contains the true misstatement rate” (Hoekstra et al., 2014).
evaluation(x = 1, n = 100, method = "binomial")
#>
#> Classical Audit Sample Evaluation
#>
#> data: 1 and 100
#> number of errors = 1, number of samples = 100, taint = 1
#> 95 percent confidence interval:
#> 0.00000000 0.04655981
#> most likely estimate:
#> 0.01
#> results obtained via method 'binomial'

Classical hypothesis testing relies on the p-value to determine whether to accept or re-
ject a certain hypothesis about a population. For example, suppose an auditor wishes
to test whether the population contains misstatements of less than three percent (they
formulate the performance materiality based on existing rules and regulations). They
would create the hypotheses 𝐻1: 𝜃 < 0.03 and 𝐻0: 𝜃 ≥ 0.03. The significance level is
set to 0.05, equivalent to an audit risk of 5 percent. This means that a p-value below
0.05 is sufficient to reject the hypothesis of intolerable misstatement 𝐻0.

In jfa, a classical hypothesis test using the p-value can be conducted by specifying
the materiality argument in the evaluation() function. For example, to indicate
a performance materiality of three percent, the auditor can specify materiality =
0.03. Along with the confidence interval, the output displays a p-value of 0.19462,
which is greater than 0.05. Therefore, the hypothesis 𝐻0 cannot be rejected at a
significance level of five percent. As a result, the auditor cannot conclude that the
sample provides sufficient evidence to reduce the audit risk to an appropriate level
and cannot state that the population does not have misstatements of three percent
or more.
eval <- evaluation(materiality = 0.03, x = 1, n = 100, method =

"binomial")↪

eval
#>
#> Classical Audit Sample Evaluation
#>
#> data: 1 and 100
#> number of errors = 1, number of samples = 100, taint = 1, p-value =
#> 0.19462
#> alternative hypothesis: true misstatement rate is less than 0.03
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#> 95 percent confidence interval:
#> 0.00000000 0.04655981
#> most likely estimate:
#> 0.01
#> results obtained via method 'binomial'

The exact definition of the p-value is “the probability of observing the data, or more
extreme data, given the truth of the hypothesis of intolerable misstatement”. The
p-value of 0.19462 can be visualized via the plot() function, see Figure 6.2.
plot(eval, type = "posterior")
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Figure 6.2. The p-value is the sum of the observed and more extreme (but unob-
served) outcomes, which in this case is the sum of 𝑘 = 0 and 𝑘 = 1 and equals 0.048
+ 0.147 = 0.195.

6.1.2 Bayesian Evaluation
In addition to classical evaluation methods, Bayesian inference offers an alternative
approach to assessing audit samples. Unlike classical methods that use confidence
intervals, Bayesian methods use credible intervals to measure the uncertainty in esti-
mates.

Bayesian inference begins by specifying a prior distribution, which reflects prior knowl-
edge about the misstatement in the population before any data is collected. This prior
distribution is then combined with the information obtained from the sample to de-
rive a posterior distribution. From the posterior distribution, credible intervals can be
calculated to estimate the most likely misstatement in the population and the range
of values within which the true value is likely to fall.

A Bayesian credible interval is intuitively interpreted as follows: There is a 95 percent
probability that the misstatement falls within the credible interval. This is in contrast
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to the interpretation of a classical confidence interval, which is often misinterpreted
for its Bayesian counterpart.

For instance, consider a scenario where a uniform beta(1, 1) prior distribution is used,
along with a sample of 100 units, one of which contains a misstatement. Using the
posterior distribution, it can be estimated that the most likely misstatement in the
population is 1 percent. Furthermore, a Bayesian credible interval can be calculated
to show that there is a 95 percent probability that the true misstatement rate lies
between 0 percent and 4.61 percent. The small difference between the classical and
default Bayesian results arises from the use of the uniform beta(1, 1) prior distribution.
To achieve classical results, we can create a prior with method = "strict" using the
auditPrior() function. Remember that any call to evaluation() can be done in a
Bayesian way by specifying a prior distribution. Therefore, the sole difference between
the call for a classical analysis and the call for a Bayesian analysis is the use of the
prior constructed through a call to auditPrior().
prior <- auditPrior(method = "default", likelihood = "binomial")
eval <- evaluation(x = 1, n = 100, prior = prior)
eval
#>
#> Bayesian Audit Sample Evaluation
#>
#> data: 1 and 100
#> number of errors = 1, number of samples = 100, taint = 1
#> 95 percent credible interval:
#> 0.00000000 0.04610735
#> most likely estimate:
#> 0.01
#> results obtained via method 'binomial' + 'prior'

You can use the plot() function to visualize the posterior distribution along the
most likely misstatement and the credible interval for the population misstatement.
Figure 6.3 shows this posterior distribution.
plot(eval, type = "posterior")
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Figure 6.3. The posterior distribution showing the most likely misstatement in
the population as a gray dot and the 95 percent credible interval for the population
misstatement as the black bars.

Bayesian hypothesis testing also involves the use of evidence measures, but instead of
p-values, Bayesian inference employs the Bayes factor, either 𝐵𝐹10 or 𝐵𝐹01, to arrive
at conclusions regarding the evidence furnished by the sample in favor of one of two
hypotheses, 𝐻1 or 𝐻0. The Bayes factor quantifies the strength of evidence in favor
of one hypothesis over another.

The Bayes factor provides an intuitive measure of statistical evidence, allowing audi-
tors to interpret the probability of the data occurring under either hypothesis. For
instance, if the evaluation() function outputs a value of 10 for 𝐵𝐹10, it means
that the data are ten times more likely to have arisen under 𝐻1 than under 𝐻0. A
Bayes factor 𝐵𝐹10 greater than 1 suggests evidence for 𝐻1 and against 𝐻0, while a
Bayes factor 𝐵𝐹10 less than 1 suggests evidence for 𝐻0 and against 𝐻1. Although
the evaluation() function returns 𝐵𝐹10 by default, one can compute 𝐵𝐹01 as the
inverse of 𝐵𝐹10 (i.e., 𝐵𝐹01 = 1

𝐵𝐹10
).

To illustrate, suppose an auditor wishes to verify whether a population contains less
than three percent misstatement. Like before, this corresponds to the hypotheses 𝐻1:
𝜃 < 0.03 and 𝐻0: 𝜃 ≥ 0.03. The auditor has taken a sample of 𝑛 = 100 items, with
only 𝑘 = 1 item containing a misstatement. By assuming a default beta(1, 1) prior
distribution, the following code evaluates the sample using a Bayesian hypothesis test
and the Bayes factor. The materiality = 0.03 argument specifies the materiality
for this population.
evaluation(materiality = 0.03, x = 1, n = 100, prior = prior)
#>
#> Bayesian Audit Sample Evaluation
#>
#> data: 1 and 100
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#> number of errors = 1, number of samples = 100, taint = 1, BF�� =
#> 137.65
#> alternative hypothesis: true misstatement rate is less than 0.03
#> 95 percent credible interval:
#> 0.00000000 0.04610735
#> most likely estimate:
#> 0.01
#> results obtained via method 'binomial' + 'prior'

In this case, the Bayes factor is 𝐵𝐹10 = 137.65, which means that the sample data
is 137.65 times more likely to occur under the hypothesis of tolerable misstatement
than the hypothesis of material misstatement. We arrived at this value by considering
both the prior distribution and the posterior distribution. Specifically, we first used
the beta(1, 1) prior distribution to calculate the prior probability of the hypothesis
of tolerable misstatement.
prior.prob.h1 <- pbeta(0.03, shape1 = 1, shape2 = 1)
prior.prob.h1
#> [1] 0.03

The probability of the hypothesis of intolerable misstatement is essentially the oppo-
site of the probability of the hypothesis of tolerable misstatement. To clarify, it is
just one minus the prior probability of the hypothesis of tolerable misstatement.
prior.prob.h0 <- 1 - prior.prob.h1
prior.prob.h0
#> [1] 0.97

We use the prior probabilities to calculate the prior odds, which is the ratio of the
prior probabilities.
prior.odds.h1 <- prior.prob.h1 / prior.prob.h0
prior.odds.h1
#> [1] 0.03092784

To compute the posterior probability of the hypothesis of tolerable misstatement,
we can use the posterior distribution and essentially follow the same steps. Hence,
we calculate the posterior probability for the hypothesis of tolerable misstatement,
then obtain the posterior probability of the hypothesis of intolerable misstatement by
subtracting this probability from one. Finally, the posterior odds are calculated as
the ratio of the posterior probabilities
post.prob.h1 <- pbeta(0.03, shape1 = 1 + 1, shape2 = 1 + 100 - 1)
post.prob.h0 <- 1 - post.prob.h1
post.odds.h1 <- post.prob.h1 / post.prob.h0
post.odds.h1
#> [1] 4.257346

Finally, the Bayes factor can be computed as the ratio of the posterior odds and the
prior odds.
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bf10 <- post.odds.h1 / prior.odds.h1
bf10
#> [1] 137.6542

It is worth noting that this Bayes factor of 137.65 is remarkably high, considering
the data that has been observed. However, this high value is not unexpected since
the Bayes factor depends on the prior distribution for 𝜃. Typically, when the prior
distribution expresses a very conservative opinion on the population misstatement,
as is the case with the beta(1, 1) prior, the Bayes factor tends to overestimate the
evidence in favor of the hypothesis of tolerable misstatement. To mitigate this, you
can use a prior distribution that is impartial towards the hypotheses by using method
= "impartial" in the auditPrior() function (Derks et al., 2022a).
prior <- auditPrior(materiality = 0.03, method = "impartial",

likelihood = "binomial")↪

evaluation(materiality = 0.03, x = 1, n = 100, prior = prior)
#>
#> Bayesian Audit Sample Evaluation
#>
#> data: 1 and 100
#> number of errors = 1, number of samples = 100, taint = 1, BF�� =
#> 7.7685
#> alternative hypothesis: true misstatement rate is less than 0.03
#> 95 percent credible interval:
#> 0.00000000 0.03806016
#> most likely estimate:
#> 0.0082131
#> results obtained via method 'binomial' + 'prior'

The analysis above was conducted using an impartial prior. The resulting output
indicates that 𝐵𝐹10 = 7.77, which moderately supports 𝐻1. This outcome suggests
that the population contains misstatements lower than five percent (tolerable mis-
statement), assuming impartiality. Both prior distributions resulted in persuasive
Bayes factors, making the results reliable regardless of the prior distribution selected.
As a result, the auditor can confidently assert that the sample data provides evidence
that the population does not contain a material misstatement.

6.1.3 Using Data
Previously, we relied on summary statistics obtained from a sample to carry out
evaluations. However, it is also possible to supply the evaluation() function with
a data set. Doing so allows the function to calculate misstatements based on the
booked and audited values of individual items.

To demonstrate how this works, we will use the allowances data set that comes
with the jfa package. This data set includes 𝑁 = 4076 financial statement line items,
each with a booked value (bookValue) and an audited (true) value (auditValue) for
illustrative purposes. The total value of the population is $16,772,249. Since this
example focuses on the evaluation stage of an audit, the sample is already identified
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within the data set. For this example, the performance materiality has been set at
five percent, or $838,612.5.
data(allowances)
head(allowances)
#> item branch bookValue auditValue times
#> 1 1 12 1600 1600 1
#> 2 2 12 1625 NA 0
#> 3 3 12 1775 NA 0
#> 4 4 12 1250 1250 1
#> 5 5 12 1400 NA 0
#> 6 6 12 1190 NA 0

When evaluating an audit sample using a data set, it is necessary to specify the data,
values, and values.audit arguments in the evaluation() function. The input for
these arguments should be the name of the relevant column in data. For example, the
call below evaluates the allowances sample using a classical evaluation procedure. In
this case, the output shows that the estimate of the misstatement in the population
is 15.77 percent, with the 95 percent (one-sided) confidence interval ranging from 0
percent to 17.5 percent.
x <- evaluation(
materiality = 0.05, data = allowances, times = "times",
values = "bookValue", values.audit = "auditValue"

)
summary(x)
#>
#> Classical Audit Sample Evaluation Summary
#>
#> Options:
#> Confidence level: 0.95
#> Materiality: 0.05
#> Hypotheses: H�: 𝜃 >= 0.05 vs. H�: 𝜃 < 0.05
#> Method: poisson
#>
#> Data:
#> Sample size: 1604
#> Number of errors: 401
#> Sum of taints: 252.9281046
#>
#> Results:
#> Most likely error: 0.15769
#> 95 percent confidence interval: [0, 0.175]
#> Precision: 0.017311
#> p-value: 1
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6.2 Partial Misstatements
Partial misstatements occur when there is only a partial discrepancy between the true
value of an item in the sample and its recorded value. From a data perspective, this
implies that the misstatements in the sample are not just binary (i.e., 0 or 1) but also
often lie between 0 and 1. For instance, a receipt for goods received can be partially
misstated if only part of the goods have been received. In practice, this means that
the usual methods for evaluating binary misstatements do not suffice.

To illustrate how auditors can adequately deal with this type of misstatements, we
examine a realistic sample from a financial audit using the allowances data set
included in the jfa package. For clarity, we perform some data pre-processing to
arrive at the population for our example. In this case, the performance materiality
(i.e., the maximum tolerable misstatement) for the population is set to 𝜃𝑚𝑎𝑥 = 0.1,
or ten percent.
population <- allowances[, c(1, 3, 4)]
population <- population[population[["bookValue"]] > 0, ]
population <- population[!is.na(population[["auditValue"]]), ]
head(population)
#> item bookValue auditValue
#> 1 1 1600 1600
#> 4 4 1250 1250
#> 7 7 1150 1150
#> 10 10 1250 1250
#> 12 12 6700 6700
#> 13 13 1450 1450

To decide whether the misstatement in the population is lower than the performance
materiality of ten percent, a sample of 𝑛 = 60 monetary units distributed across the
same number of items is selected from the population of 𝑁 = 1177 items. In this case,
the sample is selected using a fixed interval sampling method in which the items in
the population are randomized before selection.
set.seed(21)
sample <- selection(
population, size = 60, randomize = TRUE,
method = "interval", units = "values", values = "bookValue"

)$sample

After inspecting the items in the sample, each item is annotated with its recorded (i.e.,
book) value and its true (i.e., audit) value. When evaluating partial misstatements,
auditors often calculate the ‘taint’ 𝑡𝑖 of each item 𝑖, which is defined as the proportional
misstatement in the item:

𝑡𝑖 = Book value𝑖 − Audit value𝑖
Book value𝑖

. (6.1)

For instance, if item 𝑖 is booked for $1,000 but has an audit value of $500 it has a
taint of 𝑡𝑖 = 0.5. On the other hand, if the item does not contain any misstatement,
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it has a taint of 𝑡𝑖 = 0. Lastly, if the item is fully misstated (i.e., it has a book value
of $0), its taint is 𝑡𝑖 = 1.

As is often the case in practice, this audit sample contains many items that are
correct (34), some items that are fully misstated (4), and some items that are partially
misstated (22). The table below shows the distribution of these misstatements.
sample[["diff"]] <- sample[["bookValue"]] - sample[["auditValue"]]
sample[["taint"]] <- sample[["diff"]] / sample[["bookValue"]]
table(round(sample[["taint"]], 2))
#>
#> 0 0.02 0.1 0.2 0.25 0.33 0.35 0.38 0.5 0.53 0.6 0.75 0.8

1↪

#> 34 1 6 1 3 2 2 1 2 1 1 1 1
4↪

Typically, techniques for evaluating audit samples overlook the prevalence of many
zeros in the data. Yet, considering the abundance of zeros while modeling the mis-
statement in the population can enhance the auditor’s efficiency. In the following
sections, we demonstrate several approaches that can be used to deal with partial
misstatements and show how they improve the auditor’s efficiency.

6.2.1 Classical Evaluation
Classical (i.e., frequentist) methods solely look to the data for estimating the param-
eters in a statistical model via maximum likelihood estimation. This methodology is
widely adopted in auditing, and therefore we will discuss it first in this vignette.

6.2.1.1 Binomial Likelihood

The easiest way to analyze partial misstatements is to aggregate them and simply
extrapolate the sum of proportional misstatements (i.e., the total taint) to the popu-
lation. Under the hood, this approach employs a binomial likelihood to estimate the
misstatement: 𝑘 ∼ Binomial(𝑛, 𝜃). In this model, 𝜃 represents the misstatement in
the population. This method uses the sum of the taints, denoted as 𝑘 = ∑𝑛

𝑖=0 𝑡𝑖 as
the number of misstatements, together with the sample size 𝑛.
While aggregating the taints in this manner may not adhere to a strictly ‘clean’ mod-
eling approach, as the binomial likelihood is only defined for binary data represent-
ing complete misstatements, it proves to be effective in estimating the misstatement
(Broeze, 2006, Chapter 4.3). Despite its somewhat unconventional nature, the ana-
lytical feasibility of this approach makes it easy to use and therefore it is commonly
applied in practice.

For the classical binomial likelihood, aggregating the taints can be done using method
= "binomial" in the evaluation() function. Using maximum likelihood estimation,
𝜃 = ∑ 𝑡

𝑛 = 11.003
60 = 0.18338.

evaluation(
method = "binomial", data = sample, materiality = 0.1,
values = "bookValue", values.audit = "auditValue"
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)
#>
#> Classical Audit Sample Evaluation
#>
#> data: sample
#> number of errors = 26, number of samples = 60, taint = 11.003,
#> p-value = 0.98545
#> alternative hypothesis: true misstatement rate is less than 0.1
#> 95 percent confidence interval:
#> 0.0000000 0.2852153
#> most likely estimate:
#> 0.18338
#> results obtained via method 'binomial'

As shown in the output, the most likely misstatement is estimated to be 18.34 percent,
with a 95 percent upper bound of 28.52 percent. Note that this approach might be
effective (i.e., estimate the misstatement well) but not not very efficient (i.e., has
a relatively high upper bound). That is because it does not take into account the
information in the distribution of the taints.

6.2.1.2 Stringer Bound

The Stringer bound is a commonly used method to evaluate audit samples. It is
attractive because it takes into account the magnitude of the taints, thereby resulting
in a smaller confidence interval (i.e., a lower upper bound). Note that, because it
takes into account the magnitude of the taints (Bickel, 1992; Stringer, 1963), the
Stringer bound only works if the actual data are present to calculate the taints.

Here we describe te calculation of the typical Stringer bound using the binomial distri-
bution. The quantity 𝑝(0; 1 − 𝛼) is the Clopper-Pearson one-sided upper confidence
bound for a binomial parameter with 0 successes in 𝑛 trials which, for zero errors,
can be calculated as 1 −𝛼 1

𝑛 . The more general 𝑝(𝑗; 1 − 𝛼) is the Clopper-Pearson
one-sided upper confidence bound for binomial parameter with 𝑗 successes in 𝑛 trials
(Clopper & Pearson, 1934). In other words, it is the proportion corresponding to a
binomial distribution with 𝛼 percent chance that 𝑗 or less errors are observed in 𝑛
observations. That means that 𝑝(𝑗; 1 − 𝛼) is the unique solution of:

𝑛
∑

𝑘=𝑗+1
(𝑛
𝑘)𝑝𝑘(1 − 𝑝)𝑛−𝑘 = 1 − 𝛼. (6.2)

The outcome of this equation is equal to the 1 −𝛼 percentile of a beta(1 + 𝑖, 𝑛 − 𝑖)
distribution (Pearson, 1948). The Stringer bound is calculated using the Clopper-
Pearson bounds, the number of overstatements 𝑚+ and the overstatement taints 𝑧+.
When calculating the bound, the taints are placed in descending order in the formula
as a form of conservatism.
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𝑝(0; 1 − 𝛼) +
𝑚+

∑
𝑗=1

[𝑝(𝑗; 1 − 𝛼) − 𝑝(𝑗 − 1; 1 − 𝛼)] ⋅ 𝑧+𝑗
(6.3)

In jfa, the Stringer bound can be applied using method = "stringer" in the
evaluation() function. Note that the Stringer bound can also be calculated
using the Poisson or hypergeometric distributions. The jfa package supports the
Stringer bound in the evaluation() function using method = "stringer.poisson",
stringer.binomial or stringer.hypergeometric, depending on the preferred
distribution. The maximum likelihood estimate for the Stringer bound is the same
as that of the binomial likelihood.
evaluation(
method = "stringer", data = sample, materiality = 0.1,
values = "bookValue", values.audit = "auditValue"

)
#>
#> Classical Audit Sample Evaluation
#>
#> data: sample
#> number of errors = 26, number of samples = 60, taint = 11.003
#> 95 percent confidence interval:
#> 0.0000000 0.2799705
#> most likely estimate:
#> 0.18338
#> results obtained via method 'stringer.binomial'

As shown in the output, the most likely misstatement is estimated to be 18.34 percent,
with a 95 percent upper bound of 27.99 percent. Since the upper bound of the Stringer
method is (slightly) lower than that of the binomial likelihood, the Stringer bound is
more efficient.

6.2.1.3 Hurdle Beta Model

Efficiency can be further improved by explicitly modeling the probability of a taint
being zero (i.e., zero-inflation). This is a more realistic method because, in practice,
most taints are zero. More formally, if there are explicit zeros present in the data, a
model that incorporates a separate probability of being zero should be unequivocally
favored over a model that does not. That is because the probability mass associ-
ated with the zeros in the adjusted model are infinitely larger than their probability
densities under the traditional model.

In jfa, there are two types of models that incorporate a probability of the taint
being zero. These are the zero-inflated Poisson model and the hurdle beta model. In
the zero-inflated Poisson model, the idea is to incorporate extrazeros into the zeros
already present in the Poisson distribution. However, this idea does not directly apply
to a “zero-inflated beta” model. Since the beta likelihood cannot accommodate zeros,
there are no zeros to inflate. A more appropriate name for this model is therefore a
hurdle (i.e., two-component) beta model. This terminology reflects the idea that the
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model has to overcome the hurdle of zero values which are not inherently part of the
beta likelihood.

The formal specification of the hurdle beta model is given below. Here, 𝑝(0,1] is the
probability of a misstatement occurring, regardless of its size. Additionally, 𝑝1|(0,1] is
the conditional probability of a misstatement being a full misstatement. Furthermore,
𝜙 is the average (non-zero-one) taint and 𝜈 is the concentration of these taints. The
total misstatement in the population is 𝜃 = 𝑝(0,1) ⋅ 𝜙 + 𝑝1.

𝑡 =
⎧{
⎨{⎩

0 with probability 𝑝0 = 1 − 𝑝(0,1]

(0, 1] {Beta(𝜙𝜈, (1 − 𝜙)𝜈) with probability 𝑝(0,1) = 𝑝(0,1] ⋅ (1 − 𝑝1|(0,1])
1 with probability 𝑝1 = 𝑝(0,1] ⋅ 𝑝1|(0,1]

In jfa, this hurdle beta model can be fitted using method = "hurdle.beta" in the
evaluation() function. To estimate the parameters in this model using the maxi-
mum likelihood, we use the default option prior = FALSE. Using maximum likelihood
estimation, 𝑝(0,1] =

𝑛𝑡
𝑛 = 26

60 = 0.433, where 𝑛𝑡 is the number of misstatements, and
𝑝1|(0,1] = 𝑛1

𝑛𝑡
= 4

26 = 0.1539, where 𝑛1 is the number of full misstatements. Fur-
thermore, 𝜙 = ∑ 𝑡−𝑛1

𝑛𝑡−𝑛1
= 11.003−4

26−4 = 0.3183. Hence, the most likely misstatement is
estimated to be 𝜃 = (𝑝(0,1] ⋅ (1 − 𝑝1|(0,1]) ⋅ 𝜙) + (𝑝(0,1] ⋅ 𝑝1|(0,1]) = (0.433 ⋅ (1 − 0.1539)
⋅ 0.3183) + (0.433 ⋅ 0.1539) = 0.18338. The upper bound cannot be derived analyti-
cally and has to be determined by drawing samples from the fitted model. Hence, it
is recommended to call set.seed() before executing the following command to make
the results reproducible.
set.seed(1)
evaluation(
method = "hurdle.beta", data = sample, materiality = 0.1,
values = "bookValue", values.audit = "auditValue"

)
#>
#> Classical Audit Sample Evaluation
#>
#> data: sample
#> number of errors = 26, number of samples = 60, taint = 11.003
#> alternative hypothesis: true misstatement rate is less than 0.1
#> 95 percent confidence interval:
#> 0.0000000 0.2577749
#> most likely estimate:
#> 0.18338
#> results obtained via method 'hurdle.beta'

As shown in the output, the most likely misstatement is estimated to be 18.34 percent,
with a 95 percent upper bound of around 26.28 percent. Since the upper bound of
the hurdle beta model is (slightly) lower than that of the Stringer bound, the hurdle
beta model is more efficient.
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We leave it to the interested reader to apply the zero-inflated Poisson model to the
data from this sample using method = "inflated.poisson". Please note that this
requires specification of the number of items in the population (N.items) and the
number of monetary units in the population (N.units).

6.2.2 Bayesian Evaluation
In the Bayesian framework, the auditor defines a prior distribution for the parameters
in the model. This approach offers a notable advantage for models dealing with
partial misstatement, as the prior distribution has a regularizing effect, reducing the
amount of data required for reliable inferences. More specifically, frequentist models
cannot be optimized when there are no non-zero taints in the sample. Additionally,
the prior distribution enables auditors to integrate pre-existing information about
the misstatement into the statistical analysis, thereby increasing efficiency when the
auditor has pre-existing information about the misstatement.

6.2.2.1 Beta Distribution

The prior distribution we typically assign in the binomial model is the beta distribu-
tion. Just as we handle taints in the binomial likelihood, they can also be aggregated
given the prior distribution. The statistical model is 𝑘 ∼ Binomial(𝑛, 𝜃) and the
prior distribution that is used is 𝜃 ∼ Beta(𝛼, 𝛽). Given the data 𝑛 and 𝑘 = ∑ 𝑡,
the posterior distribution for the default beta(1, 1) prior distribution (prior = TRUE)
can be derived analytically and is 𝜃 ∼ Beta(𝛼 = 1 + ∑ 𝑡, 𝛽 = 1 + 𝑛 − ∑ 𝑡).
For the binomial likelihood, this Bayesian model can be applied in the evaluation()
function using method = "binomial" in comination with prior = TRUE. However,
the input for the prior argument can also be an object created by the auditPrior()
function.
eval_bayes <- evaluation(
method = "binomial", data = sample, materiality = 0.1,
values = "bookValue", values.audit = "auditValue", prior = TRUE

)
eval_bayes
#>
#> Bayesian Audit Sample Evaluation
#>
#> data: sample
#> number of errors = 26, number of samples = 60, taint = 11.003, BF��
#> = 0.15107
#> alternative hypothesis: true misstatement rate is less than 0.1
#> 95 percent credible interval:
#> 0.0000000 0.2808365
#> most likely estimate:
#> 0.18338
#> results obtained via method 'binomial' + 'prior'

As shown in the output, the most likely misstatement is estimated to be 18.34 percent,
with a 95 percent upper bound of 28.1 percent. The prior and posterior distribution
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can be visualized via the plot(..., type = "posterior") command in Figure 6.4.
plot(eval_bayes, type = "posterior")
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Figure 6.4. The beta prior and posterior distribution on the range [0; 1] after seeing
a total taint of 11.003 in the sample of 60 units. The total taint is made up of 26
individual full or partial misstatements.

6.2.2.2 Hurdle Beta Model

It is also possible to fit a Bayesian variant of the hurdle beta model. This entails
applying prior distributions for the parameters 𝑝, 𝜙, and 𝜈. The prior distributions
used by jfa for the Bayesian hurdle beta model are 𝑝(0,1] ∼ Beta(𝛼, 𝛽) (to be specified
by the user), 𝑝1|(0,1] ∼ Beta(1, 1), 𝜙 ∼ Beta(1, 1), and 𝜈 ∼ Normal(0, 100).

This Bayesian hurdle beta model can be applied using method = "hurdle.beta" in
combination with prior = TRUE (or an object created by the auditPrior() function)
in the evaluation() function. In this case, the posterior distribution cannot be
determined analytically and must be determined using MCMC sampling, which is
why it is recommended to call set.seed() before computing the results.
set.seed(2)
eval_hurdle_bayes <- evaluation(
method = "hurdle.beta", data = sample, materiality = 0.1,
values = "bookValue", values.audit = "auditValue", prior = TRUE

)
eval_hurdle_bayes
#>
#> Bayesian Audit Sample Evaluation
#>
#> data: sample
#> number of errors = 26, number of samples = 60, taint = 11.003, BF��
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#> = 0.007913
#> alternative hypothesis: true misstatement rate is less than 0.1
#> 95 percent credible interval:
#> 0.000000 0.259837
#> most likely estimate:
#> 0.179
#> results obtained via method 'hurdle.beta' + 'prior'

As shown in the output, the most likely misstatement is estimated to be 17.73 percent,
with a 95 percent upper bound of around 26.51 percent. The prior and posterior
distribution can be visualized using the plot() function in Figure 6.5.
plot(eval_hurdle_bayes, type = "posterior")
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Figure 6.5. The hurdle beta prior and posterior distribution on the range [0; 1] after
seeing a total taint of 11.003 in the sample of 60 units. The total taint is made up of
26 individual full or partial misstatements.

6.3 Practical Exercises
1. Evaluate a sample of 𝑛 = 30 items containing 𝑘 = 2 misstatements. Use the

classical approach.
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6.4 Answers to the Exercises
1. The evaluation can be performed using the evaluation() function with the

default arguments.
evaluation(n = 30, x = 2, method = "binomial")
#>
#> Classical Audit Sample Evaluation
#>
#> data: 2 and 30
#> number of errors = 2, number of samples = 30, taint = 2
#> 95 percent confidence interval:
#> 0.000000 0.195326
#> most likely estimate:
#> 0.066667
#> results obtained via method 'binomial'
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Chapter 7

Stratified Evaluation

In the realm of audit sampling, the practice of stratified sampling is a powerful tech-
nique that enables auditors to enhance the accuracy and representativeness of their
samples. Stratified sampling is a strategy employed in audit sampling where the pop-
ulation is divided into distinct subgroups or strata based on relevant characteristics.
These characteristics could include geographical location, department, business unit,
or any other factor that might influence the distribution of errors or misstatements.
By segregating the population into strata, auditors can ensure that their sample cap-
tures the diversity of the entire population. This chapter delves into the intricacies of
stratified evaluation, exploring three distinct approaches—no pooling, complete pool-
ing, and partial pooling—each with its own advantages and trade-offs. Knowledge
of these three approaches is crucial for auditors aiming to optimize their statistical
evaluation and generate robust population estimates.

Consider an example of auditing expense claims in a large organization. Instead
of treating all expense claims as a uniform entity, auditors can stratify the claims
based on the departments they belong to. This approach ensures that the audit
sample includes a representative mix of claims from different departments, thereby
reducing the risk of overlooking specific areas of concern. Another example of such a
situation would be a group audit where the audited organization consists of different
components or branches. Stratification is relevant for the group auditor if they must
form an opinion on the group as a whole because they must aggregate the samples
taken by the component auditors.

In general, there are three approaches to evaluating a stratified sample: no pooling,
complete pooling, and partial pooling. No pooling assumes no similarities between
strata, which means that all strata are analyzed independently. Complete pooling
assumes no difference between strata, which means that all data is aggregated and
analyzed as a whole. Finally, partial pooling assumes differences and similarities
between strata, which means that information can be shared between strata. Partial
pooling (i.e., hierarchical modeling) is a powerful technique that can result in more
efficient population and stratum estimates.

As a data example, consider the retailer data set that comes with the package. The
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Figure 7.1. There are three approaches to evaluating a stratified audit sample: no
pooling, complete pooling and partial pooling. Image available under a CC-BY-NC
4.0 license.

organization in question consists of 20 branches across the country. In each of the 20
strata, a component auditor has taken a statistical sample and reported the outcomes
to the group auditor.
data(retailer)
head(retailer)
#> stratum items samples errors
#> 1 1 5000 300 21
#> 2 2 5000 300 16
#> 3 3 5000 300 15
#> 4 4 5000 300 14
#> 5 5 5000 300 16
#> 6 6 5000 150 5

The number of units per stratum in the population can be provided with N.units
to weigh the stratum estimates to determine population estimate. This is called
poststratification. If N.units is not specified, each stratum is assumed to be equally
represented in the population.

7.1 No pooling
No pooling (pooling = "none", default) assumes no similarities between strata. This
means that the prior distribution specified through prior is applied independently
for each stratum. This allows for independent estimates for the misstatement in each
stratum but also results in a relatively high uncertainty in the population estimate.
Assuming a binomial likelihood and a beta(𝛼, 𝛽) prior on 𝜃 (these choices may differ
among analysts), the statistical model applied in the no pooling approach is the
following:
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𝑘𝑠 ∼ Binomial(𝑛𝑠, 𝜃𝑠) (7.1)
𝜃𝑠 ∼ Beta(𝛼, 𝛽) (7.2)

𝜃 ← ∑ 𝜃𝑠𝑁𝑠
𝑁 (7.3)

The call below evaluates the sample using a Bayesian stratified evaluation procedure,
in which the stratum estimates are poststratified to arrive at the population estimate.
Since the posterior distribution is determined via sampling it is important to use
set.seed() to make the results reproducible.
set.seed(1)
result_np <- evaluation(
materiality = 0.05,
method = "binomial",
n = retailer[["samples"]],
x = retailer[["errors"]],
N.units = retailer[["items"]],
alternative = "two.sided",
pooling = "none",
prior = TRUE

)
result_np
#>
#> Bayesian Audit Sample Evaluation
#>
#> data: 115 and 2575
#> number of errors = 115, number of samples = 2575, taint = 115, BF��
#> = 0
#> alternative hypothesis: true misstatement rate is not equal to 0.05
#> 95 percent credible interval:
#> 0.04276326 0.08220109
#> most likely estimate:
#> 0.0598
#> results obtained via method 'binomial' + 'no-pooling' + 'prior'

In this case, the output of the summary() function shows that the estimate of the
misstatement in the population is 5.98 percent, with the 95 percent credible interval
ranging from 4.28 percent to 8.22 percent. The stratum estimates can be visualized
using the plot() function in combination with type = "estimates, see Figure 7.2.
Estimation plots display stratum estimates and their uncertainties, revealing the dif-
ferences and overlaps between strata. As the figure shows, the stratum estimates
differ substantially from each other but are relatively uncertain.
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plot(result_np, type = "estimates")
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Figure 7.2. Estimates of the population and stratum misstatement under the no
pooling model.

Posterior distribution plots provide insights into how the prior beliefs evolve after
considering the data, showcasing the gradual convergence of information. The prior
and posterior distribution for the population misstatement can be requested via the
plot() function, see Figure 7.3.
plot(result_np, type = "posterior")
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Figure 7.3. Prior and posterior distribution for the population misstatement under
the no pooling model.

7.2 Complete pooling
Complete pooling (pooling = "complete") assumes no differences between strata.
This has the advantages that data from all strata can be aggregated, which decreases
the uncertainty in the population estimate compared to the no pooling approach.
However, the disadvantage of this approach is that it does not facilitate the distinction
between between strata, as every stratum receives the same estimate equal to that of
the population, see Figure 7.4. Assuming a binomial likelihood and a beta(𝛼, 𝛽) prior
on 𝜃, the statistical model applied in the complete pooling approach is the following:

𝑘 ∼ Binomial(𝑛, 𝜃) (7.4)
𝜃 ∼ Beta(𝛼, 𝛽) (7.5)

The call below evaluates the sample using a Bayesian stratified evaluation procedure,
in which the strata are assumed to be the same.
result_cp <- evaluation(
materiality = 0.05,
method = "binomial",
n = retailer[["samples"]],
x = retailer[["errors"]],
N.units = retailer[["items"]],
alternative = "two.sided",
pooling = "complete",
prior = TRUE

)
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result_cp
#>
#> Bayesian Audit Sample Evaluation
#>
#> data: 115 and 2575
#> number of errors = 115, number of samples = 2575, taint = 115, BF��
#> = 0.022725
#> alternative hypothesis: true misstatement rate is not equal to 0.05
#> 95 percent credible interval:
#> 0.03735031 0.05334542
#> most likely estimate:
#> 0.04466
#> results obtained via method 'binomial' + 'complete-pooling' +

'prior'↪

For example, the output of the summary() function shows that the estimate of the
misstatement in the population is 4.47 percent, with the 95 percent credible interval
ranging from 3.74 percent to 5.34 percent. Since the data is aggregated, the stratum
estimates contain relatively little uncertainty. However, the probability of misstate-
ment in stratum 20 (many misstatements) under this assumption is the same as that
of stratum 15 (few misstatements).
plot(result_cp, type = "estimates")

0.0

0.2

0.4

0.6

0.8

1.0

Population1 2 3 4 5 6 7 8 9 1011121314151617181920

M
is

st
at

em
en

t

Figure 7.4. Estimates of the population and stratum misstatement under the com-
plete pooling model.

The prior and posterior distribution for the population misstatement can be requested
via the plot() function, see Figure 7.5.
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plot(result_cp, type = "posterior")
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Figure 7.5. Prior and posterior distribution for the population misstatement under
the complete pooling model.

7.3 Partial pooling
Finally, partial pooling (pooling = "partial") assumes differences and similarities
between strata. This allows the auditor to differentiate between strata, while also
sharing information between the strata to reduce uncertainty in the population esti-
mate. Assuming a binomial likelihood and a beta prior for 𝜃, the statistical model
applied in the partial pooling approach is the following:

𝑘𝑠 ∼ Binomial(𝑛𝑠, 𝜃𝑠) (7.6)
𝜃𝑠 ∼ Beta(𝜙𝜈, (1 − 𝜙)𝜈) (7.7)
𝜙 ∼ Beta(𝛼, 𝛽) (7.8)

𝜈 ∼ Pareto(1, 3
2) (7.9)

𝜃 ← ∑ 𝜃𝑠𝑁𝑠
𝑁 (7.10)

The call below evaluates the sample using a Bayesian stratified evaluation procedure,
in which the stratum estimates are poststratified to arrive at the population estimate.
set.seed(1)
result_pp <- evaluation(
materiality = 0.05,
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Figure 7.6. Partial pooling takes into account the hierarchical structure in the data.
Image available under a CC-BY-NC 4.0 license.

method = "binomial",
n = retailer[["samples"]],
x = retailer[["errors"]],
N.units = retailer[["items"]],
alternative = "two.sided",
pooling = "partial",
prior = TRUE

)
result_pp
#>
#> Bayesian Audit Sample Evaluation
#>
#> data: 115 and 2575
#> number of errors = 115, number of samples = 2575, taint = 115, BF��
#> = 0.033424
#> alternative hypothesis: true misstatement rate is not equal to 0.05
#> 95 percent credible interval:
#> 0.03239331 0.05387699
#> most likely estimate:
#> 0.0432
#> results obtained via method 'binomial' + 'partial-pooling' +

'prior'↪

In this case, the output shows that the estimate of the misstatement in the population
is 4.32 percent, with the 95 percent credible interval ranging from 3.23 percent to 5.39
percent. Note that this population estimate is substantially less uncertain than that of
the no pooling approach. Figure 7.7 visualizes the population and stratum estimates.
Note that, like in the no pooling approach, the stratum estimates are different from
each other but lie closer together and are less uncertain.
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plot(result_pp, type = "estimates")
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Figure 7.7. Estimates of the population and stratum misstatement under the partial
pooling model.

The prior and posterior distribution for the population misstatement can be requested
via the plot() function, see Figure 7.8.
plot(result_pp, type = "posterior")
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Figure 7.8. Prior and posterior distribution for the population misstatement under
the partial pooling model.
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7.4 Evaluation using data
To illustrate these concepts using data, let’s consider the allowances dataset included
in the package, which contains 3500 financial statement line items with book values
(bookValue) and, for illustrative purposes, audited (true) values (auditValue) across
different branches. Since the focus of this chapter is the evaluation stage in the audit,
the sample is already indicated in the data set. The performance materiality in this
example is set to five percent.
data(allowances)
head(allowances)
#> item branch bookValue auditValue times
#> 1 1 12 1600 1600 1
#> 2 2 12 1625 NA 0
#> 3 3 12 1775 NA 0
#> 4 4 12 1250 1250 1
#> 5 5 12 1400 NA 0
#> 6 6 12 1190 NA 0

Evaluating a stratified sample using data requires specification of the data, values,
values.audit and strata arguments in the evaluation() function. In this case,
the units are monetary and calculated by aggregating the book values of the items in
each stratum.
N.units <- aggregate(allowances[["bookValue"]],

list(allowances[["branch"]]), sum)$x↪

7.4.1 Classical Evaluation
Using classical evaluation, auditors can apply stratified evaluation to assess the popu-
lation misstatement rate. The estimates obtained under this approach reflect indepen-
dent evaluation of each stratum, potentially leading to a relatively high uncertainty
in the overall population estimate. The statistical model for this evaluation using the
Poisson likelihood is relatively simple:

𝑡𝑠 ∼ Poisson(𝑛𝑠𝜃𝑠) (7.11)

𝜃 ← ∑ 𝜃𝑠𝑁𝑠
𝑁 (7.12)

The call below evaluates the allowances sample using a classical stratified evalu-
ation procedure, in which the stratum estimates are poststratified to arrive at the
population estimate.
set.seed(1)
result_dnpc <- evaluation(
materiality = 0.05,
data = allowances,
N.units = N.units,
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values = "bookValue",
values.audit = "auditValue",
strata = "branch",
times = "times",
alternative = "two.sided",
pooling = "none"

)
result_dnpc
#>
#> Classical Audit Sample Evaluation
#>
#> data: allowances
#> number of errors = 401, number of samples = 1604, taint = 252.93,
#> p-value = NA
#> alternative hypothesis: true misstatement rate is not equal to 0.05
#> 95 percent confidence interval:
#> 0.1254576 0.1827606
#> most likely estimate:
#> 0.14723
#> results obtained via method 'poisson' + 'no-pooling'

In this case, the output shows that the estimate of the misstatement in the population
is 14.72 percent, with the 95 percent confidence interval ranging from 12.55 percent to
18.28 percent. The precision of the population estimate is 5.73 percent. The stratum
estimates can be seen in the output of the summary() function and are visualized in
Figure 7.9 below.
plot(result_dnpc, type = "estimates")
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Figure 7.9. Estimates of the population and stratum misstatement under the no
pooling model.
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7.4.2 Bayesian Evaluation
Bayesian inference can improve upon the estimates of the classical approach by pooling
information between strata where possible. The statistical model for this evaluation
using the multilevel model with the use of taints is relatively complex:

𝑡𝑖, 𝑠 ∼ Beta(𝜃𝑠𝜅𝑠, (1 − 𝜃𝑠)𝜅𝑠) (7.13)
𝜃𝑠 ∼ Beta(𝜙𝜈, (1 − 𝜙)𝜈) (7.14)
𝜅𝑠 ∼ Normal(𝜇, 𝜎)+ (7.15)
𝜙 ∼ Beta(𝛼, 𝛽) (7.16)

𝜈 ∼ Pareto(1, 3
2) (7.17)

𝜇 ∼ Normal(1, 100)+ (7.18)
𝜎 ∼ Normal(0, 10)+ (7.19)

𝜃 ← ∑ 𝜃𝑠𝑁𝑠
𝑁 (7.20)

The call below evaluates the allowances sample using a Bayesian multilevel stratified
evaluation procedure, in which the stratum estimates are poststratified to arrive at
the population estimate.
set.seed(1)
result_dnpb <- evaluation(
materiality = 0.05,
method = "binomial",
data = allowances,
N.units = N.units,
values = "bookValue",
values.audit = "auditValue",
strata = "branch",
times = "times",
alternative = "two.sided",
pooling = "partial",
prior = TRUE

)
result_dnpb
#>
#> Bayesian Audit Sample Evaluation
#>
#> data: allowances
#> number of errors = 401, number of samples = 1350, taint = 224.66,
#> BF�� = Inf
#> alternative hypothesis: true misstatement rate is not equal to 0.05
#> 95 percent credible interval:
#> 0.1571658 0.1757359
#> most likely estimate:
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#> 0.1659
#> results obtained via method 'binomial' + 'partial-pooling' +

'prior'↪

The output shows that the estimate of the misstatement in the population is 16.59
percent, with the 95 percent credible interval ranging from 15.72 percent to 17.57 per-
cent. The precision of the population estimate is 1.85 percent, which is substantially
lower than that of the classical approach. The stratum estimates can be seen in the
output of the summary() function and are visualized in Figure 7.10 below.
plot(result_dnpb, type = "estimates")
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Figure 7.10. Estimates of the population and stratum misstatement under the
partial pooling model.

The prior and posterior distribution for the population misstatement can be requested
via the plot() function, see Figure 7.11.
plot(result_dnpb, type = "posterior")
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Figure 7.11. Prior and posterior distribution for the population misstatement under
the partial pooling model.

Stratified evaluation is a pivotal tool in an auditor’s arsenal, allowing for the analysis
of diverse populations with varying characteristics. By embracing the principles of no
pooling, complete pooling, and partial pooling, auditors can tailor their evaluation
strategies to balance independence and shared information, resulting in more accurate
and reliable population estimates. The combination of these approaches with real-
world data offers auditors a comprehensive toolkit to enhance the quality and efficiency
of their evaluations.

7.5 Practical Exercises
1. Evaluate a stratified sample of 𝑛𝑠 = [30, 40, 50] items containing 𝑘𝑠 = [0, 1, 2]

misstatements. Use the classical approach.
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7.6 Answers to the Exercises
1. To evaluate a stratified sample using the classical approach, the evaluation()

function can be used with the default arguments.
evaluation(n = c(30, 40, 50), x = c(0, 1, 3), method = "binomial")
#>
#> Classical Audit Sample Evaluation
#>
#> data: 4 and 120
#> number of errors = 4, number of samples = 120, taint = 4
#> 95 percent confidence interval:
#> 0.00000000 0.08888266
#> most likely estimate:
#> 0.028333
#> results obtained via method 'binomial' + 'no-pooling'
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Chapter 8

JASP for Audit

JASP (JASP Team, 2025; Love et al., 2019), an acronym for Jeffreys’s Amazing
Statistics Program, is a free and open-source software for statistical analysis developed
at the University of Amsterdam. It is intended to be user-friendly and familiar to
those who have experience with SPSS. A significant feature of JASP is that it provides
most standard statistical analysis procedures in both their classical and Bayesian
forms. Furthermore, the software is actively being translated into various languages,
including Dutch.

(a) JASP (b) JASP for Audit

Figure 8.1. JASP is an open-source statistical software program that provides free
and flexible access to classical and Bayesian statistics. JASP for Audit is an add-on
module for JASP that facilitates statistal auditing in both manifestations.

8.1 Downloading JASP
You can freely download JASP from their website https://jasp-stats.org. Simply
click on the ‘Download JASP’ button on the homepage, and you will be taken to the
download page. There, you can select your preferred installation option. JASP is
compatible with Windows, MacOS, Linux, and Chrome OS. The installation process
is fairly straightforward and familiar. Once installed, open the software to see the
welcoming screen displayed below.

JASP for Audit (Derks, de Swart, Wagenmakers, et al., 2021) is an add-on module
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Figure 8.2. Upon launching JASP, you are presented with the following screen. The
icons in the ribbon display a range of statistical analyses. The menu icon located in
the top left corner conceals the most crucial user options. The plus icon situated in
the top right corner conceals the additional modules.

for JASP, based on the jfa package, that facilitates statistical audit sampling. The
module provides graphical a user interface (GUI) for calculating sample sizes, selecting
items according to standard audit sampling techniques, and performing inference
about the population misstatement on the basis of a data sample or summary statistics
of a sample. The module also features Bayesian equivalents of these analyses that
enable the user to easily incorporate prior information into the statistical procedure.
In all analyses, the Audit module offers explanatory text that helps the auditor in
interpreting, explaining, and reporting the analysis. Since JASP for Audit is an R-
based GUI around jfa, its functionality can be mapped almost one-on-one to that of
the package.

The Audit module in JASP, labeled as “Audit” in the module list, is included by
default in the software, but is not initially visible upon starting the program. To
access the Audit module, click on the + icon in the top right corner of the JASP
welcome screen, and select the module from the list of available options. The Audit
module will then be displayed with a blue icon in the ribbon at the top of the screen.

Upon selecting the Audit module icon, the user can view all of the analyses that the
module contains. It is important to note that some of these analyses are grayed out
by default and can only be activated once a data set has been loaded into JASP. This
means that the user must first import a data set in order to access and make use
of these specific analyses. For a quick explanation on how to achieve this, see this
student manual on the JASP website.
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Figure 8.3. The + icon displays all modules that are currently available in JASP.
To activate a module and add it to the ribbon at the top of the screen, click on the
checkbox next to it.

Figure 8.4. By clicking the Audit module icon in the ribbon, you can view the
various analyses that are included in the audit module.
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8.2 Planning
To plan a sample for an audit using JASP, the procedure is comparable to using jfa.
This means that both programs involve similar steps and considerations in order to
effectively plan an audit sample. Like jfa, JASP for Audit offers a classical and a
Bayesian approach to planning a sample.

The figure below showcases a snapshot of the classical planning analysis in JASP for
Audit. The graphical user interface is displayed on the left side of the screen, while
the audit report containing statistical results is displayed on the right side. In the
user interface, the auditor can input the known parameters for the sample planning,
after which JASP calculates and directly displays the statistical results.

Figure 8.5. A snapshot of the classical planning analysis in JASP for Audit. In this
analysis, the auditor is using the binomial likelihood, a sampling risk of five percent,
a performance materiality of three percent and one expected misstatement in the
sample. The resulting sample size is 157.

The above screenshot shows an analysis where the auditor is using the binomial dis-
tribution, a sampling risk of five percent, a performance materiality of three percent
and one expected misstatement in the sample. The resulting sample size is 𝑛 = 157.

Using jfa, these statistical results can be reproduced by executing the following code:
planning(materiality = 0.03, expected = 1, likelihood = "binomial")
#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 157
#> sample size obtained in 156 iterations via method 'binomial'

The figure below showcases a snapshot of the Bayesian planning analysis in JASP. The
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graphical user interface is largely the same as the interface of the classical planning
analysis, with the exception that we can specify a prior distribution with the options
under “Prior”.

Figure 8.6. Snapshot of the Bayesian planning analysis in JASP for Audit. In
this analysis, the auditor is using the Poisson likelihood with an impartial gamma
prior, a sampling risk of five percent, a performance materiality of ten percent and
no expected misstatements in the sample. The resulting sample size is 24.

The above screenshot shows an analysis where the auditor is using the Poisson like-
lihood together with an impartial gamma prior, a sampling risk of five percent, a
performance materiality of ten percent and no expected misstatements in the sample.
The resulting sample size is 𝑛 = 24.

Using jfa, these statistical results can be reproduced by executing the following code:
prior <- auditPrior(method = "impartial", materiality = 0.1)
planning(materiality = 0.1, likelihood = "poisson", prior = prior)
#>
#> Bayesian Audit Sample Planning
#>
#> minimum sample size = 24
#> sample size obtained in 25 iterations via method 'poisson' +

'prior'↪

8.3 Selection
Selecting a sample in JASP for Audit works similar to how you would do it in jfa. The
figure below showcases a snapshot of the selection analysis in JASP for Audit. In the
user interface, the auditor can input the known parameters for the sample selection,
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after which JASP calculates and directly displays the statistical results.

Figure 8.7. A snapshot of the selection analysis in JASP for Audit. In this analysis,
the auditor is using a fixed interval monetary unit sampling method to select a sample
of 60 monetary units from a population.

The above screenshot shows an analysis where the auditor is using a fixed interval
monetary unit sampling method to select a sample of 60 monetary units from the
BuildIt population. They use a starting point of 1.

Using jfa, these statistical results can be reproduced by executing the following code:
set.seed(1)
data(BuildIt)
result <- selection(
data = BuildIt, size = 60,
method = "interval", start = 1, values = "bookValue"

)
head(result[["sample"]])
#> row times ID bookValue auditValue
#> 1 1 1 82884 242.61 242.61
#> 2 60 1 70084 377.41 377.41
#> 3 118 1 59254 353.26 353.26
#> 4 176 1 27801 314.65 314.65
#> 5 235 1 98624 340.60 340.60
#> 6 293 1 38060 403.92 403.92

8.4 Evaluation
Finally, evaluating a sample in JASP for Audit works similar to how you would do
it in jfa. The figure below showcases a snapshot of the evaluation analysis in JASP
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for Audit. In the user interface, the auditor can input the known parameters for the
sample evaluation, after which JASP calculates and directly displays the statistical
results.

Figure 8.8. A snapshot of the classical evaluation analysis in JASP for Audit. In this
analysis, the auditor is using the binomial likelihood, a sampling risk of five percent,
a performance materiality of six percent and evaluates a sample of 50 items of which
none contained a misstatement. The resulting upper bound is 5.8 percent and the
p-value is 0.045.

The above screenshot shows an analysis where the auditor is using the binomial like-
lihood, a sampling risk of five percent, a performance materiality of six percent and
evaluates a sample of 𝑛 = 50 items of which 𝑘 = 0 contained a misstatement. The
resulting 95 percent upper confidence bound is 5.8 percent and the p-value is 0.045,
which is lower than the sampling risk of five percent.

Using jfa, these statistical results can be reproduced by executing the following code:
evaluation(materiality = 0.06, method = "binomial", x = 0, n = 50)
#>
#> Classical Audit Sample Evaluation
#>
#> data: 0 and 50
#> number of errors = 0, number of samples = 50, taint = 0, p-value =
#> 0.045331
#> alternative hypothesis: true misstatement rate is less than 0.06
#> 95 percent confidence interval:
#> 0.00000000 0.05815508
#> most likely estimate:
#> 0
#> results obtained via method 'binomial'
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The figure below showcases a snapshot of the Bayesian evaluation analysis in JASP.
The graphical user interface is fairly similar to that of the classical evaluation analysis,
with the exception that we can specify a prior distribution with the options under
“Prior”.

Figure 8.9. Snapshot of the Bayesian evaluation analysis in JASP for Audit. In this
analysis, the auditor is using the binomial likelihood together with a beta prior distri-
bution, a sampling risk of five percent, a performance materiality of three percent and
evaluates a sample of 120 items of which one contained a misstatement. The resulting
upper bound is 3.27 percent and the Bayes factor in favor of tolerable misstatement
is 9.394.

The above screenshot shows an analysis where the auditor is using the binomial likeli-
hood together with a beta prior distribution based on an expected error rate of three
percent constructed using the audit risk model, a sampling risk of five percent, a
performance materiality of three percent and evaluates a sample of 𝑛 = 120 items of
which 𝑘 = 1 contained a misstatement. The resulting 95 percent upper credible bound
is 3.27 percent and the Bayes factor in favor of tolerable misstatement is 9.394, indicat-
ing that the sample data are about 9 times more likely to occur under the hypothesis
of tolerable misstatement than under the hypothesis of intolerable misstatement.

Using jfa, these statistical results can be reproduced by executing the following code:
prior <- auditPrior(
method = "arm", likelihood = "binomial", materiality = 0.03,
expected = 0.01, ir = 0.6, cr = 1

)
evaluation(
materiality = 0.03, method = "binomial",
x = 1, n = 120, prior = prior

)
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#>
#> Bayesian Audit Sample Evaluation
#>
#> data: 1 and 120
#> number of errors = 1, number of samples = 120, taint = 1, BF�� =
#> 9.3941
#> alternative hypothesis: true misstatement rate is less than 0.03
#> 95 percent credible interval:
#> 0.00000000 0.03267759
#> most likely estimate:
#> 0.0088415
#> results obtained via method 'binomial' + 'prior'

8.5 Sampling Workflow
This example demonstrates how JASP for Audit simplifies the standard audit sam-
pling workflow, also known as the “audit workflow.” Let’s consider an instance of the
Classical audit workflow involving a fictional construction company called BuildIt,
which is being audited by an external auditor from a fictional audit firm.

BuildIt diligently maintains a record of every transaction made in their general ledger
throughout the year. The auditor’s primary responsibility is to assess the fairness
of these general ledger items, specifically to determine whether this population of
general ledger items is free of material misstatement. Material misstatement indicates
the presence of large enough to potentially impact decisions made based by someone
relying on the financial statements. Given that BuildIt is a small company, its general
ledger population comprise only 3500 items, each accompanied by a corresponding
recorded book value. Before scrutinizing the population in detail, the auditor must
evaluate the reliability of BuildIt’s internal control systems, which processed these
general ledger items, and deems them to be reasonably dependable. Therefore, the
auditor determines the control risk to be “medium”.

To arrive at a conclusion regarding the accuracy of BuildIt’s recorded items, the
auditor divides the audit workflow into the four (by now) well-known stages. Firstly,
they plans the size of the sample that needs to be examined to make well-founded
inferences about the entire population. Secondly, the auditor selects the necessary
sampling units from the population. Thirdly, the auditor inspects the selected sample
and determines the audit value (true value) of the items it contains. Lastly, the auditor
employs the information gathered from the audited sample to draw inferences about
the financial statements as a whole.

To initiate this workflow, the auditor begins by importing BuildIt’s financial state-
ments into JASP. The dataset containing this information is accessible in JASP
through the path: “Open” -> “Data Library” -> “7. Audit” -> “Testing for Over-
statements”.
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8.5.1 Audit Risk Model
In statistical terms, the auditor aims to make a statement with 95 percent confidence
about the misstatement in the population is lower than the materiality threshold
(i.e., the performance materiality). In this example, the performance materiality is
set at one percent. Drawing from the previous year’s audit at BuildIt, where no
misstatements were found, the auditor expects zero misstatements in the sample that
will be audited. Consequently, the statistical statement can be rephrased as follows:
When zero misstatements are detected in the sample, the auditor can conclude with
95 percent confidence that the misstatement in the entire population is below the one
percent materiality threshold.

Typically, auditors evaluate inherent risk and control risk (sometimes analytical risk is
also taken into acocunt as a fourth constituent of audit risk) using a three-point scale
consisting of “Low”, “Medium”, and “High”. Different audit firms employ varying
standard percentages for these risk categories. JASP for Audit defines the proba-
bilities associated with low, medium, and high as shown in the table below. Since
the auditor has conducted testing on BuildIt’s computer systems, the control risk
assessment is determined to be medium (52 percent).

Level Inherent Risk (IR) Control Risk (CR) Analytical Risk (CAR)
High 1 1 1

Medium 0.63 0.52 0.5
Low 0.40 0.34 0.25

8.5.2 Planning
The Sampling Workflow begins with the Planning stage. The auditor enters a perfor-
mance materiality value of one percent and keeps the confidence level at 95 percent.
To ensure the creation of an annotated report, the Explanatory text option is en-
abled. Moving on, the auditor selects the variables ID and bookValues and assigns
them to their respective fields in the interface. Finally, the control risk assessment is
adjusted from High to Medium, and the distribution used (e.g., likelihood) is set to
the binomial distribution.

The default output provides information that if no misstatements are encountered in
the sample, the auditor needs to audit 234 items from the population of 3500 items.
This sample size will sufficiently reduce the audit risk to conclude that the population
does not contain misstatements larger than one percent. The auditor proceeds to the
Selection stage by clicking the “To Selection” button located in the bottom-right
corner of the interface.

8.5.3 Selection
The auditor has a variable in the “Book Value” field in the previous stage, which
automatically selects the “monetary units” option for sampling units in the Selection
stage. By default, the chosen sampling method is “Fixed interval sampling,” and
a random starting point is applied. However, these settings can be modified in the
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Figure 8.10. A snapshot of the planning stage for this example in the sampling
workflow analysis in JASP for Audit.

corresponding section if needed. The default output shows that 234 euros have been
selected, distributed over 234 items. The selection has a total value of 114,896.23
euros, which is 8.19 percent of the total value of the population.

Upon reviewing the default output, the auditor determines that no adjustments are
required in this stage. To proceed to the Execution stage, the auditor clicks the “To
Execution” button located in the bottom-right corner of the interface.

8.5.4 Execution
During the execution phase, the auditor is prompted to provide two column names.
The first column, referred to as the “Column name selection result,” records the fre-
quency of monetary units selected within a transaction for the sample. The second
column, known as the “Column name audit values,” allows the auditor to manually
enter the audited amounts for the transactions. These column names are automati-
cally populated, but they can be modified based on preference. To input the values
for these variables in the dataset, the auditor clicks the “Fill Variables” button. Once
clciked, the “Data Entry” section opens, allowing the auditor to input the audit val-
ues for the sample. However, if using an example file where the audited amounts
are already known, the auditor can proceed directly to the evaluation step without
entering the audit values.

Suppose the auditor finds a single misstatement in the sample. Specifically, item
four has a recorded value of 431.87 euros and a true value of 200 euros. Hence, it is
overstated by 231.87 euros.
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Figure 8.11. A snapshot of the selection stage for this example in the sampling
workflow analysis in JASP for Audit.

8.5.5 Evaluation
In the Evaluation stage, the column created and filled with the audit values is placed in
the Audit Values field within the interface. The inference is automatically conducted
based on the selected options from the previous stages. The auditor has the ability to
adjust the evaluation method, if applicable, and modify the numerical format of the
results using the advanced options. Additionally, tables and plots that provide clear
visualization of the statistical outcomes can be requested.

Based on the default output, the auditor discovers that out of the 234 items in the
sample, one item contained a partial misstatement. This information yields a most
likely error of 0.002 (0.23 percent), with an upper bound of 0.014 (1.37 percent) at a
confidence level of 90.38 percent. The precision is calculated to be 0.011 (1.1 percent).

Since the 90.38 percent upper bound on misstatement in BuildIt’s financial statements
exceeds the performance materiality threshold of one percent, the auditor is unable
to conclude that the population as a whole is free from misstatements below one
percent. Consequently, the auditor cannot determine that the sampling risk has been
sufficiently reduced to conclude that BuildIt’s financial statements are free of material
misstatement.
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Figure 8.12. A snapshot of the evaluation stage for this example in the sampling
workflow analysis in JASP for Audit.
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Chapter 9

R Packages

This chapter discusses other R packages that implement statistical techniques for
audit sampling. Such information may be useful for auditors who wish to explore
alternative approaches or simply want to confirm the results obtained through the
use of the jfa package. By exploring these other packages, auditors can gain a greater
understanding of the various options available for audit sample planning, selection
and evaluation.

9.1 MUS
MUS (Prömpers & Guimarães, 2019) is an R package providing sampling and eval-
uation methods to apply Monetary Unit Sampling during an audit of financial state-
ments. The package is available via CRAN and can be downloaded by running the
code below. Unlike jfa, the MUS package provides no functionality for Bayesian
audit sampling.
install.packages("MUS")

To show the diffences and similarities between the use of the MUS package and the
jfa package, consider a scenario in which an auditor wants to plan a monetary unit
sample such that the sampling risk can be reduced below five percent. The population
in this example consists of 𝑁 = 1000 monetary units and the performance materiality
is defined as ten percent (or 100 monetary units). The auditor plans the sample using
an expected misstatement rate of one percent (or 10 monetary units).

To compute this sample size, the MUS package provides the MUS.calc.n.conservative()
function, which takes the performance materiality in monetary units as the
tolerable.error argument, the expected misstatements in monetary units as the
expected.error argument, and the total number of unit in the population as the
book.value argument. The resulting sample size is 37.
MUS::MUS.calc.n.conservative(tolerable.error = 100, expected.error =

10, book.value = 1000, confidence.level = 0.95)↪
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#> [1] 37

These results can be reproduced in jfa using the following command:
planning(materiality = 0.1, expected = 0.01, likelihood = "poisson")
#>
#> Classical Audit Sample Planning
#>
#> minimum sample size = 37
#> sample size obtained in 38 iterations via method 'poisson'

9.2 samplingbook
samplingbook (Manitz et al., 2021) is an R package based on the book Stich-
proben: Methoden und praktische Umsetzung mit R (Kauermann & Kuechen-
hoff, 2010) that focuses on survey sampling and statistical analysis of these samples.
The package is available via CRAN and can be downloaded by running the code below.
Unlike jfa, the samplingbook package provides limited functionality for auditing as
it mainly focuses on survey sampling.
install.packages("samplingbook")

To show the diffences and similarities between the use of the samplingbook package
and the jfa package, consider a scenario in which an auditor wants to evaluate a sample
of items and is interested in estimating the 95 percent upper confidence bound. The
population in this example consists of 𝑁 = 300 items and the auditor has inspected
a sample of 𝑛 = 100 items, of which 𝑘 = 3 contained a misstatement.

To compute the upper bound, the samplingbook package provides the Sprop()
function, which takes the number of found misstatements in the sample as the m
argument, the sample size as the n argument and the population size as the N argument.
Note that because this function solely computes a two-sided interval for the population
misstatement, the 95 percent upper bound can be obtained by using an interval of 90
percent with level = 0.9. The resulting upper bound is 0.07.
samplingbook::Sprop(m = 3, n = 100, N = 300, level = 0.90)
#>
#> Sprop object: Sample proportion estimate
#> With finite population correction: N = 300
#>
#> Proportion estimate: 0.03
#> Standard error: 0.014
#>
#> 90% approximate confidence interval:
#> proportion: [0.007,0.053]
#> number in population: [3,15]
#> 90% exact hypergeometric confidence interval:
#> proportion: [0.01,0.07]
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#> number in population: [3,21]

These results can be reproduced in jfa using the following command:
evaluation(x = 3, n = 100, N.units = 300, method = "hypergeometric",

alternative = "less", conf.level = 0.95)↪

#>
#> Classical Audit Sample Evaluation
#>
#> data: 3 and 100
#> number of errors = 3, number of samples = 100, taint = 3
#> 95 percent confidence interval:
#> 0.00000000 0.06666667
#> most likely estimate:
#> 0.03
#> results obtained via method 'hypergeometric'

9.3 audit
audit (Meeden, 2021) is an R package based on the paper by Meeden & Sargent (2007)
that can be used to find an upper bound for the total amount of overstatement of assets
in a set of accounts and estimating the amount of sales tax owed on a collection of
transactions. The package is available via CRAN and can be downloaded by running
the code below. Unlike jfa, The audit package provides limited functionality for
evaluating audit samples and has no functionality for planning and selection.
install.packages("audit")
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Appendix: R Tutorial

R (R Core Team, 2022) is a programming language and software environment for
statistical computing and graphics. It is widely used among statisticians and data
scientists for data analysis and data visualization. R has a large and active community
of users and, as a result, there are many community-made resources available for
learning and using R.

In an audit context, R can be used to analyze and visualize large datasets, allow-
ing auditors to identify trends and anomalies in the data. R is particularly useful
for performing statistical analysis and testing hypotheses, which can be employed in
verifying the accuracy and reliability of financial statements. R can also be used to
automate certain audit procedures, reducing the time and effort required to manu-
ally review and analyze large amounts of data. Additionally, R allows auditors to
easily share their work with others through the use of code and reproducible reports,
enabling more efficient and collaborative audit processes. A useful resource that dis-
cusses relevant applications of R in the audit can be found in Lin (2021).

This chapter provides a short introduction to working with R but it is not a full
programming course in R. Furthermore, if you want to dive deeper into the nooks and
crannies of this language, the author recommends reading Chang (2022), Wickam &
Grolemund (2017), Grolemund (2014) and Wilke (2022). These books are free to read
online and discuss various best practices for using R, including examples in code that
can be easily reproduced.

Calculations
One of the basic features of R is its ability to perform calculations. In R, basic
calculations work by using the standard arithmetic operators such as + for addition,
- for subtraction, * for multiplication, and / for division. For example, if you want
to calculate 2 + 3, you would type in 2 + 3 and R will return the result of 5.
2 + 3
#> [1] 5

R also allows for more advanced calculations such as exponentiation using the ^
operator, and square roots using the sqrt() function. For example, to calculate the
square root of 9, you would type in sqrt(9) and R will return the result of 3.
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Figure 9.1. R can be a powerful tool in a business context. Image available under
a CC-BY-NC 4.0 license.

sqrt(9)
#> [1] 3

You can also use parentheses to specify the order of operations in your calculations.
For example, if you want to calculate (2 + 3) * 4, you would type in (2 + 3) * 4 to
get the result of 20.
(2 + 3) * 4
#> [1] 20

Overall, basic calculations in R are similar to those in other programming languages
and follow the standard order of operations.

Vectors
In R, vectors are one-dimensional arrays of data that can hold numeric, character,
or logical values. Vectors can be created using the c() function, which stands for
concatenate. For example, to create a numeric vector, you can use the following code:
x <- c(1, 2, 3, 4, 5)

To create a character vector, you can use quotes around the values:
y <- c("apple", "banana", "orange")

To create a logical vector, you can use the logical values TRUE and FALSE:
z <- c(TRUE, FALSE, TRUE, TRUE, FALSE)

Vectors can be indexed using square brackets and a numeric value. For example, to
access the second element of the vector x, you can use the following code:
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x[2]
#> [1] 2

Vectors can also be subsetted using a logical vector. For example, to get all elements
of the vector x that are greater than 3, you can use the following code:
x[x > 3]
#> [1] 4 5

Vectors can also be modified using indexing and assignment. For example, to change
the third element of the vector x to 6, you can use the following code:
x[3]
#> [1] 3
x[3] <- 6
x[3]
#> [1] 6

R has many built-in functions for performing mathematical operations on vectors.
For example, you can use the mean() function to calculate the average of a vector of
numbers, or we can use the length() function to calculate the number of elements
in a vector:
mean(x)
#> [1] 3.6
length(y)
#> [1] 3

Overall, vectors are a useful data structure in R for storing and manipulating data.

Matrices
In R, a matrix is a two-dimensional collection of values that are arranged in rows and
columns. You can create a matrix using the matrix() function. For example:
m <- matrix(1:9, nrow = 3, ncol = 3)
m
#> [,1] [,2] [,3]
#> [1,] 1 4 7
#> [2,] 2 5 8
#> [3,] 3 6 9

This creates a 3x3 matrix with the values 1, 2, 3 in the first column, 4, 5, 6 in the
second column, and 7, 8, 9 in the third column.

You can also create a matrix by combining several vectors using the cbind() or
rbind() functions. For example:
v1 <- c(1, 2, 3)
v2 <- c(4, 5, 6)
v3 <- c(7, 8, 9)

165



Appendix: R Tutorial

m <- cbind(v1, v2, v3)
m
#> v1 v2 v3
#> [1,] 1 4 7
#> [2,] 2 5 8
#> [3,] 3 6 9

This creates a matrix with the same values as before, but the columns are created by
binding the vectors together.

You can access the elements of a matrix using the square bracket notation. For
example, to access the element in the second row and third column of m, you would
use the following code:
m[2, 3]
#> v3
#> 8

You can also use the dim() function to get the dimensions of a matrix, and the
colnames() and rownames() functions to get the names of the columns and rows,
respectively.

There are many other functions and operations available for working with matrices
in R, including mathematical operations such as matrix multiplication and inversion.

Data Frames
In R, a data frame is a two-dimensional table of data with rows and columns. Each
row represents a single observation or record, and each column represents a particular
variable or attribute. Data frames are similar to a spreadsheet in Excel or a table
in a database. Each column in a data frame can have a different data type, such as
numerical, character, or logical. The data in each row must match the data type of
the corresponding column.

To create a data frame in R, you can use the data.frame() function and pass in the
data you want to include in the data frame as arguments. For example:
df <- data.frame(x = c(1, 2, 3), y = c(4, 5, 6))

This will create a data frame with two columns, x and y, and three rows of data. You
can access the data in a data frame using indexing and subsetting. For example, to
access the first row of the data frame, you can use the following command:
df[1, ]
#> x y
#> 1 1 4

To access a specific column, you can use the $ operator (or the index):
df$x
#> [1] 1 2 3
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df[, 1]
#> [1] 1 2 3
df[, "x"]
#> [1] 1 2 3
df[["x"]]
#> [1] 1 2 3

You can also use functions like head() and tail() to view the first or last few rows
of a data frame. Data frames also have several built-in functions that allow you to
manipulate and analyze the data. For example, you can use the summarize() function
to calculate summary statistics for each column, or the group_by() function to group
the data by a specific variable and apply a function to each group.

Data Sets
When working with data, you will need to load the data file into your R session. How
this is done depends on the type of data file that you want to read.

Built-in Data
Data that is included in an R package can be loaded via the data() function. For
example, to load the BuildIt data set that is included in the jfa package, you can
run the following R code. Note that this requires that the package is loaded in the R
session via a call to library().
data(BuildIt)

Loading Data from a CSV File
A commonly used data type is a .csv file. You can load this type of files via the
read.csv() function. For example, if the file example.csv is in the current working
directory, you can load it by running:
read.csv("example.csv")

Loading Data from an Excel File
Another commonly used data type are Excel files. You can load this type of files via
the read_excel() function from the readxl package. For this to work, you should
first install this package using the install.packages() command and load it into
the R session using a call to library(). For example, if the file example.xlsx is in
the current working directory, and the data you want to load is on the first worksheet,
you can load it by running:
install.packages("readxl")
library(readxl)
read_excel("example.csv", sheet = 1)
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Practical Exercises
1. Compute the square root of 81 and store the result in a variable called t1.

2. Compute 81 to the power a half and store the result in a variable called t2.

3. Use the == operator to check whether the content of t1 and t2 is the same.

4. Use the c() function (or :) to create the following vector: -2 -1 0 1 2 3 4
5 6 7 8.

5. Find out the length of the vector created in exercise 4.

6. Find out the mean of the vector created in exercise 4.
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Answers to the Exercises
1. Assigning a variable can be achieved via the <- operator, while the square root

is computed via the sqrt() function.
t1 <- sqrt(81)

2. The square root can also be computed using the power operator ^.
t2 <- 81^0.5

3. The == operator can be used to check if the contents of t1 and t2 are the same.
t1 == t2
#> [1] TRUE

4. There are two main (and many more other) ways of creating this vector:
c(-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8)
#> [1] -2 -1 0 1 2 3 4 5 6 7 8

or:
-2:8
#> [1] -2 -1 0 1 2 3 4 5 6 7 8

5. The length of any vector can be obtained using the length() function.
length(-2:8)
#> [1] 11

6. The average of any vector can be obtained using the mean() function.
mean(-2:8)
#> [1] 3
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This book, Statistical Audit Sampling with R, is intended as a 
practical guide for auditors who wish to employ probability theory in 
their audit sampling activities. While the focus of this book is exclusively 
on audit sampling, it aims to discuss the topic from both the classical 
(frequentist) perspective and the Bayesian perspective. By examining the 
subject through these two lenses, the book explains the statistical theory 
behind commonly used audit sampling procedures and demonstrates 
how to perform these procedures in accordance with international 
auditing standards, using the jfa R package, in a statistically sound 
manner.

Furthermore, the book serves as a user manual for jfa and JASP for 
Audit, which is a module for the free and open-source statistical 
software program JASP that integrates the functionality of the jfa 
package and offers a user-friendly graphical interface that caters 
specifically to statistical auditing (https://jasp-stats.org).
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